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Abstract In the ordinary framework, the factorization of a weak preference re-
lation into a strict preference relation and an indifference relation is unique. How-
ever, in fuzzy set theory, the intersection and the union of fuzzy sets can be rep-
resented different ways. Furthermore, some equivalent properties in the ordinary
case have generalizations in the fuzzy framework that may be not equivalent. For
these reasons there exist in the literature several factorizations of a fuzzy weak
preference relation. In this paper we obtain and characterize different factoriza-
tions of fuzzy weak preference relations by means of two courses of action which
are equivalent in the ordinary framework: axioms and definitions of strict prefer-
ence and indifference.

1 Introduction

In social choice theory agents’ preferences on a set of alternatives are usually
represented through complete binary relations. These weak preference relations
show whether an alternative is at least as good as another or vice versa. Start-
ing from a weak preference relationR, it is possible to obtain a strict preference
relation P and an indifference relationI. This factorization is unique, so that
P = R ∩ (R−1)c, which is equivalent toP = (R−1)c, and I = R ∩R−1. More-
over, these binary relations satisfy the following properties:P is asymmetric,I
is symmetric,P ∩ I = ∅ and R = P ∪ I. These properties can be considered as
the starting point, and, in this case, we will refer to them as axioms.
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However, human preferences are often vague, and the previous model does
not allow for this fact. Vagueness can be taken into account by means of ordinal
concepts (see, for instance, Basu, Deb and Pattanaik [6]) or through fuzzy logic.
The use of fuzzy binary relations in social choice theory for representing individ-
uals’ preferences has been justified by several authors, such as Blin [8], Basu [5],
Barrett, Pattanaik and Salles [3], Dutta [12] and Barrett and Pattanaik [4], among
others.

In fuzzy set theory, several triangular norms and conorms are used for defin-
ing the intersection and the union of fuzzy sets, respectively. Furthermore, some
ordinary properties can be generalized in different ways to the fuzzy framework.
Consequently, various factorizations of fuzzy weak preference relations have been
given and studied in the literature. See, for example, Orlovsky [19], Ovchinnikov
[20] and [21], Dutta [12], Banerjee [2], Dasgupta and Deb [9] and [10] and
Richardson [24], among others.

It is important to emphasize that in the theory of preference modelling some
authors such as Roubens and Vincke [25], Barrett and Pattanaik [4], Ovchinnikov
and Roubens [23], Fodor [13], Van de Walle, De Baets and Kerre [29] and Lla-
mazares [16], among others, also suppose an incomparability relation. A survey of
this development can be found in De Baets and Fodor [11].

In this paper we try to clarify the generalization of some properties from the
ordinary to the fuzzy framework. This is very important because the definitions
of asymmetry and completeness determine the characterizations ofP and I. In
the same way, the choice ofP , I and the transitivity property plays a crucial role
in the generalization of Arrow’s Impossibility Theorem to the fuzzy framework.
For instance, Dutta [12, p. 225] and Banerjee [2, p. 126] obtain opposite results
because they utilize different definitions ofP .

Moreover, we generalize and characterize some factorizations from the liter-
ature by means of two courses of action: axioms and definitions ofP and I.
When we consider the axioms we conclude that the only interesting t-norms are
φ–transforms of Łukasiewicz’s t-norm. Under the assumption of reciprocal order
automorphisms, if we require additional conditions such asP = R∩ (R−1)c and
I = R ∩ R−1 (or P = (R−1)c ), then we obtain generalizations of the factor-
izations given by Orlovsky [19] and Barrett and Pattanaik [4], respectively. On the
other hand, when we establish the definitions ofP and I as the starting point, we
prove thatP and I satisfy the axioms only for generalizations of the factorization
given by Barrett and Pattanaik [4].

The paper is organized as follows: In Section 2 we introduce notation and
basic definitions. In Section 3 we focus our analysis on factorizations obtained
from axioms, while in Section 4 we develop our research based on definitions of
P and I. We conclude in Section 5.

2 Preliminaries

Let A be a not empty set of alternatives with|A| ≥ 2. An ordinary binary relation
Q on A is an ordinary subset ofA×A. We will use aQb to denote(a, b) ∈ Q.
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Given an ordinary binary relationQ on A, the ordinary binary relationsQ−1 and
Qc are defined by

Q−1 = {(a, b) ∈ A×A | (b, a) ∈ Q},
Qc = {(a, b) ∈ A×A | (a, b) /∈ Q}.

An ordinary binary relationQ on A is:

1. reflexiveif aQa for all a ∈ A.
2. irreflexiveif not aQa for all a ∈ A.
3. symmetricif Q ⊆ Q−1 (aQb ⇒ bQa, for all a, b ∈ A).
4. asymmetricif Q ∩Q−1 = ∅ (aQb ⇒ not bQa, for all a, b ∈ A).
5. completeif Q ∪Q−1 = A×A (aQb or bQa, for all a, b ∈ A).

An ordinary binary relationR on A is an ordinary weak preference relation
if it is complete. Any ordinary weak preference relation can be factorized into an
ordinary strict preference relation, P = R∩ (R−1)c, and an ordinary indifference
relation, I = R ∩ R−1. SinceR is complete, we have thatP = R ∩ (R−1)c is
equivalent toP = (R−1)c. The ordinary binary relationsP and I are character-
ized through the following properties:

1. P is asymmetric.
2. I is symmetric.
3. P ∩ I = ∅.
4. R = P ∪ I.

Completeness and asymmetry imply reflexivity and irreflexivity, respectively.
Therefore,R is reflexive andP is irreflexive. Moreover,I is also reflexive as a
consequence ofR = P ∪ I, R reflexive andP irreflexive.

A fuzzy subset B of Ais defined through its membership function, µB : A −→
[0, 1], whereµB(a) is the grade of membership ofa in B. Given two fuzzy sub-
setsB and C of A, B ⊆ C if µB(a) ≤ µC(a) for all a ∈ A. The complement
of a fuzzy setB of A, Bc, is defined byµBc(a) = 1 − µB(a) for all a ∈ A.
The intersection and the union of fuzzy sets are defined by means of triangular
norms and conorms, respectively. These functions satisfy the following properties:
commutativity, monotonicity, associativity and a boundary condition. Triangular
norms and conorms were widely studied by Schweizer and Sklar [26] in the con-
text of probabilistic metric spaces.

A function T : [0, 1]2 −→ [0, 1] is a triangular norm(t-norm) if it satisfies the
following conditions:

1. T (1, x) = x for all x ∈ [0, 1].
2. T (x, y) = T (y, x) for all x, y ∈ [0, 1].
3. T (x, y) ≤ T (u, v) for all x, y, u, v ∈ [0, 1] such thatx ≤ u, y ≤ v.
4. T (x, T (y, z)) = T (T (x, y), z) for all x, y, z ∈ [0, 1].

A function S : [0, 1]2 −→ [0, 1] is a triangular conorm(t-conorm) if it satisfies
the following conditions:

1. S(0, x) = x for all x ∈ [0, 1].
2. S(x, y) = S(y, x) for all x, y ∈ [0, 1].
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3. S(x, y) ≤ S(u, v) for all x, y, u, v ∈ [0, 1] such thatx ≤ u, y ≤ v.
4. S(x, S(y, z)) = S(S(x, y), z) for all x, y, z ∈ [0, 1].

It is easy to check thatT (x, 0) = 0 and S(x, 1) = 1, for all x ∈ [0, 1].
Given a t-normT , the functionS(x, y) = 1−T (1−x, 1−y) is a t-conorm and

it is called the dual t-conorm ofT . If T is a t-norm andS is its dual t-conorm,
the intersection and the union of two fuzzy subsetsB and C of A are defined as
follows:

1. µ(B∩C)(a) = T (µB(a), µC(a)) for all a ∈ A.
2. µ(B∪C)(a) = S(µB(a), µC(a)) for all a ∈ A.

It is important to emphasize that the utilization of dual t-conorms allows De
Morgan laws,(B ∪ C)c = Bc ∩ Cc and (B ∩ C)c = Bc ∪ Cc, to be satisfied in
fuzzy set theory.

Next we show some t-norms and their dual t-conorms which are very usual in
the literature.

1. minimum: min(x, y).
maximum: max(x, y).

2. algebraic product: Π(x, y) = xy.
algebraic sum: Π ′(x, y) = x + y − xy.

3. Łukasiewicz’s t-norm: W (x, y) = max(x + y − 1, 0).
Łukasiewicz’s t-conorm: W ′(x, y) = min(x + y, 1).

A function φ : [0, 1] −→ [0, 1] is an order automorphismif it is bijective
and increasing. Any order automorphismφ is strictly increasing, continuous and
satisfiesφ(0) = 0, φ(1) = 1. Furthermore, the functionφ−1 is also an order
automorphism. An order automorphismφ is reciprocalif φ(1 − x) = 1 − φ(x)
for all x ∈ [0, 1]. It is easy to check thatφ is reciprocal if and only ifφ−1 is
reciprocal. On this, see Garcı́a-Lapresta and Llamazares [15].

Given a t-normT and an order automorphismφ, the φ–transform ofT is the
t-norm Tφ defined byTφ(x, y) = φ−1(T (φ(x), φ(y))). For instance,

Wφ(x, y) = φ−1(max(φ(x) + φ(y)− 1, 0)),

and its dual t-conorm is

W ′
φ(x, y) = 1− φ−1(max(φ(1− x) + φ(1− y)− 1, 0)).

Moreover, whenφ is reciprocal we obtain

W ′
φ(x, y) = φ−1(min(φ(x) + φ(y), 1)).

A t-norm T is Archimedeanif T (x, x) < x for all x ∈ (0, 1). A t-norm T
has zero divisorsif there existx, y ∈ (0, 1) such thatT (x, y) = 0.

A fuzzy binary relationQ onA is a fuzzy subset ofA×A. The valueµQ(a, b)
will be denoted byQ(a, b). If Q(a, b) ∈ {0, 1} for all a, b ∈ A then Q is an
ordinary binary relation. In this case,aQb denotesQ(a, b) = 1.

Given a fuzzy binary relationQ on A, the fuzzy binary relationsQ−1 and
Qc are defined byQ−1(a, b) = Q(b, a) and Qc(a, b) = 1 − Q(a, b), for all
a, b ∈ A.

Given a t-normT and its dual t-conormS, a fuzzy binary relationQ on A
is:
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1. reflexiveif Q(a, a) = 1 for all a ∈ A.
2. irreflexiveif Q(a, a) = 0 for all a ∈ A.
3. symmetric1 if Q(a, b) = Q(b, a) for all a, b ∈ A.
4. asymmetricif T (Q(a, b), Q(b, a)) = 0 for all a, b ∈ A.
5. completeif S(Q(a, b), Q(b, a)) = 1 for all a, b ∈ A.

The above definitions of asymmetry and completeness are not standard. Some
authors, such as Dutta [12], Banerjee [2] and Richardson [24], call asymmetry
antisymmetry, and they consider the following definitions:

1. Asymmetry: Q(a, b) > 0 ⇒ Q(b, a) = 0, for all a, b ∈ A.
2. Completeness: Q(a, b) + Q(b, a) ≥ 1 for all a, b ∈ A.

However, this definition of asymmetry is a very strong condition sinceQ(b, a)
has to be null even thoughQ(a, b) is very small. In this respect, Blin [8] and Bar-
rett and Pattanaik [4] suggest that the vagueness “arises through the multiplicity
of dimensions underlying preferences”, and consequently, bothQ(a, b) > 0 and
Q(b, a) > 0 would be possible (see the mentioned authors for more details).

Moreover, the definitions of asymmetry and completeness in fuzzy set theory
depend on the properties that we use for these concepts in the ordinary framework.
If we considerQ∩Q−1 = ∅ andQ∪Q−1 = A×A, respectively, thenQ∩Q−1 =
∅ results in

Q(a, b) > 0 ⇒ Q(b, a) = 0, for all a, b ∈ A,

only for t-norms without zero divisors, so Łukasiewicz’s t-norm should not be
used. But if the t-norm has no zero divisors and we utilize its dual t-conorm for the
union of fuzzy sets, thenQ ∪Q−1 = A×A implies

Q(a, b) = 1 or Q(b, a) = 1, for all a, b ∈ A,

which is a strong restriction.
On the other hand, we can make use of properties which are independent of t-

norms and t-conorms. For instance,Qc ⊆ Q−1 is equivalent toQ∪Q−1 = A×A
in the ordinary framework, which allows us to obtain

Q(a, b) + Q(b, a) ≥ 1 for all a, b ∈ A,

as the definition of completeness. But, in this case,Q−1 ⊆ Qc is also equivalent
to Q ∩Q−1 = ∅ and we should use

Q(a, b) + Q(b, a) ≤ 1 for all a, b ∈ A,

as the definition of asymmetry.
In fuzzy set theory completeness and asymmetry do not imply reflexivity and

irreflexivity, respectively. Therefore, a fuzzy binary relationR on A is a fuzzy
weak preference relationif it is reflexive and complete. Given a fuzzy weak prefer-
ence relationR we say that(P, I) is an axiomatic factorization ofR if the fuzzy
binary relationsP and I satisfy the following properties:

1. P is irreflexive and asymmetric.

1 In the ordinary frameworkQ = Q−1.
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2. I is reflexive and symmetric.
3. P ∩ I = ∅.
4. R = P ∪ I.

The third assumption gives us another reason for rejectingP (a, b) > 0 ⇒
P (b, a) = 0. If this condition stems fromP ∩ P−1 = ∅, i.e. the asymmetry ofP ,
then P (a, b) > 0 ⇒ I(a, b) = 0 should also be considered sinceP ∩ I = ∅.

In the fuzzy frameworkP = R ∩ (R−1)c is not equivalent toP = (R−1)c.
Moreover, we obtain different results when we consider that(P, I) is an axiomatic
factorization ofR and when we suppose thatP = R∩(R−1)c (or P = (R−1)c )
and I = R∩R−1. Therefore, there exist two courses of action in order to analyze
fuzzy preferences: axiomatic factorizations and definitions ofP and I. These
courses of action will be studied in the following sections.

To conclude this section we are going to show some of the most usual factor-
izations from the literature.

1. The following factorization was given by Orlovsky [19] and afterwards char-
acterized by Richardson [24]:

P (a, b) = max(R(a, b)−R(b, a), 0),
I(a, b) = min(R(a, b), R(b, a)).

2. Ovchinnikov [20] gave this factorization and later it was characterized by Dutta
[12]:

P (a, b) =
{

R(a, b), if R(a, b) > R(b, a),
0, otherwise,

I(a, b) = min(R(a, b), R(b, a)).

3. This one was given by Dutta [12] and also by Roubens and Vincke [25] (with
incomparability relations). Afterwards it was characterized by Banerjee [2]:

P (a, b) = 1−R(b, a),
I(a, b) = min(R(a, b), R(b, a)).

4. Barrett and Pattanaik [4] gave the following factorization with incomparability
relations:

P (a, b) = 1−R(b, a),
I(a, b) = R(a, b) + R(b, a)− 1.

We would like to emphasize that in this factorization we have

R(a, b) + R(b, a) = 1 ⇒
{

I(a, b) = 0,
P (a, b) = R(a, b).

In this case,R(a, b) represents the intensity with whicha is preferred tob. This
is the interpretation that Bezdek et al. [7], Nurmi [18], Tanino [27], Nakamura [17]
and Garćıa-Lapresta and Llamazares [15], among others, have used for the mod-
elization of individuals’ preferences. Therefore, the factorization given by Barrett
and Pattanaik [4] generalizes the framework utilized by the previous authors.
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3 Results about axiomatic factorizations

In this section we focus our attention on the consequences which are derived when
we suppose that(P, I) is an axiomatic factorization ofR. Obviously, our analy-
sis depends on the t-normT and its dual t-conormS used for representing the
intersection and the union of fuzzy sets. In this section we consider only con-
tinuous t-norms. When the t-norm has no zero divisors, thenR, P and I are
ordinary binary relations. If the t-norm has zero divisors we distinguish between
non-Archimedean and Archimedean t-norms. In the first case we obtain that there
exists a threshold so that the fuzzy weak preference relation cannot take non-zero
values less than this threshold. In the second one, Ovchinnikov and Roubens [22]
have proven that the t-norm is aφ–transform of Łukasiewicz’s t-norm. When
we consider reciprocal order automorphisms and we include the requirements
P = R ∩ (R−1)c and I = R ∩ R−1 (or P = (R−1)c ), then we obtain gen-
eralizations of the factorizations given by Orlovsky [19] and Barrett and Pattanaik
[4], respectively.

First of all, we are going to show the conditions that a fuzzy weak preference
relation and an axiomatic factorization have to hold.

Remark 1. If R is a fuzzy weak preference relation and(P, I) is an axiomatic
factorization ofR, then for all a, b ∈ A the following statements hold:

1. R(a, a) = 1 and S(R(a, b), R(b, a)) = 1.
2. P (a, a) = 0 and T (P (a, b), P (b, a)) = 0.
3. I(a, a) = 1 and I(a, b) = I(b, a).
4. T (P (a, b), I(a, b)) = 0.
5. R(a, b) = S(P (a, b), I(a, b)).

Our analysis starts with continuous t-norms without zero divisors.

Theorem 1. Let R be a fuzzy weak preference relation and(P, I) an axiomatic
factorization ofR. If T is a continuous t-norm without zero divisors, thenR is
an ordinary weak preference relation.

Proof . Given a, b ∈ A we are going to prove thatR(a, b) ∈ {0, 1}. Since

T (1−R(a, b), 1−R(b, a)) = 1− S(R(a, b), R(b, a)) = 0

andT is a t-norm without zero divisors, then we obtainR(a, b) = 1 or R(b, a) =
1. If R(b, a) = 1, then

T (1− P (b, a), 1− I(b, a)) = 1− S(P (b, a), I(b, a)) = 1−R(b, a) = 0.

Again, sinceT has no zero divisors we haveP (b, a) = 1 or I(b, a) = 1. We
study these cases:

1. If P (b, a) = 1, then

P (a, b) = T (P (a, b), 1) = T (P (a, b), P (b, a)) = 0,
I(a, b) = T (1, I(a, b)) = T (P (b, a), I(b, a)) = 0.

Therefore,R(a, b) = S(P (a, b), I(a, b)) = S(0, 0) = 0.
2. If I(b, a) = 1, then

R(a, b) = S(P (a, b), I(a, b)) = S(P (a, b), 1) = 1. ut
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Remark 2. It is easy to check thatP and I are also ordinary binary relations on
A.

In view of the previous result, we focus our analysis on continuous t-norms
with zero divisors. Continuous non-Archimedean t-norms with zero divisors have
been studied by Van de Walle, De Baets and Kerre [28]. They obtain, among others,
the following result.

Proposition 1. Let T be a continuous non-Archimedean t-norm with zero divisors
and S its dual t-conorm. Then there existθ ∈ (0, 1) and an order automorphism
ϕ such that for all(x, y) ∈ [0, 1]2,

S(x, y) = 1 ⇔




x = 1, or
y = 1, or
(1− x, 1− y) ∈ (0, θ)2 and ϕ( 1−x

θ ) + ϕ( 1−y
θ ) ≤ 1.

Remark 3. Van de Walle, De Baets and Kerre [28] obtain in their work that(1 −
x, 1− y) ∈ (0, θ]2. However, it is easy to check that1− x = θ or 1− y = θ are
not possible.

In the following theorem we prove that for continuous non-Archimedean t-
norms with zero divisors there exists a threshold so that the fuzzy weak preference
relation cannot take non-zero values less than the threshold. The proof is similar
to that provided by Van de Walle, De Baets and Kerre [28] in the factorization of
fuzzy preferences with incomparability relations.

Theorem 2. Let R be a fuzzy weak preference relation and(P, I) an axiomatic
factorization ofR. If T is a continuous non-Archimedean t-norm with zero divi-
sors, then there existsθ ∈ (0, 1) such thatR(a, b) ∈ {0, 1} or R(a, b) > 1− θ,
for all a, b ∈ A.

Proof . Given a, b ∈ A, we haveS(R(a, b), R(b, a)) = 1. By Proposition 1 there
exist θ ∈ (0, 1) and an order automorphismϕ such that one of the following
statements holds:

1. R(a, b) = 1.
2. R(b, a) = 1.

3. (1−R(a, b), 1−R(b, a)) ∈ (0, θ)2 and ϕ
(

1−R(a,b)
θ

)
+ ϕ

(
1−R(b,a)

θ

)
≤ 1.

In the first case and in the last one the result is obvious. IfR(b, a) = 1, then
S(P (b, a), I(b, a)) = 1. Hence, by Proposition 1 we have the following cases:

1. If P (b, a) = 1, then

P (a, b) = T (P (a, b), 1) = T (P (a, b), P (b, a)) = 0,
I(a, b) = T (1, I(a, b)) = T (P (b, a), I(b, a)) = 0.

Therefore,R(a, b) = S(P (a, b), I(a, b)) = S(0, 0) = 0.
2. If I(b, a) = 1, then R(a, b) = S(P (a, b), I(a, b)) = S(P (a, b), 1) = 1.

3. If (1−P (b, a), 1− I(b, a)) ∈ (0, θ)2 and ϕ
(

1−P (b,a)
θ

)
+ϕ

(
1−I(b,a)

θ

)
≤ 1,

then

R(a, b) = S(P (a, b), I(a, b)) ≥ S(0, I(b, a)) = I(b, a) > 1− θ. ut
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The following result, given by Ovchinnikov and Roubens [22], characterizes
continuous Archimedean t-norms with zero divisors by means ofφ–transforms of
Łukasiewicz’s t-norm.

Theorem 3. A t-norm T is a continuous Archimedean t-norm with zero divisors if
and only if there exists an order automorphismφ such thatT = Wφ.

Theorem 3 allows us to obtain some conditions that an axiomatic factorization
holds for continuous Archimedean t-norms with zero divisors.

Corollary 1 . Let R be a fuzzy weak preference relation and(P, I) an axiomatic
factorization ofR. If T is a continuous Archimedean t-norm with zero divisors,
then there exists an order automorphismφ such that for alla, b ∈ A the following
statements hold:

1. φ(1−R(a, b)) + φ(1−R(b, a)) ≤ 1.
2. φ(P (a, b)) + φ(P (b, a)) ≤ 1.
3. φ(P (a, b)) + φ(I(a, b)) ≤ 1.
4. φ(1−R(a, b)) = max(φ(1− P (a, b)) + φ(1− I(a, b))− 1, 0).

Proof . It is sufficient to take into account thatT = Wφ and that the conditions
R ∪R−1 = A×A, P ∩ P−1 = ∅, P ∩ I = ∅ and R = P ∪ I are satisfied. ut

Now we focus our analysis on reciprocal order automorphisms. This fact al-
lows us to determineP depending onR and I.

Theorem 4. Let R be a fuzzy weak preference relation and(P, I) an axiomatic
factorization ofR. If φ is a reciprocal order automorphism andT = Wφ, then
for all a, b ∈ A,

P (a, b) = φ−1(φ(R(a, b))− φ(I(a, b))),

φ−1

(
φ(R(a, b)) + φ(R(b, a))− 1

2

)
≤ I(a, b) ≤ min(R(a, b), R(b, a)).

Proof . Given a, b ∈ A, by 3 and 4 of Corollary 1 and the reciprocity ofφ we
have

1− φ(R(a, b)) = max(1− φ(P (a, b))− φ(I(a, b)), 0)
= 1− φ(P (a, b))− φ(I(a, b)),

hence,P (a, b) = φ−1(φ(R(a, b))− φ(I(a, b))).
Since φ(R(a, b)) = φ(P (a, b)) + φ(I(a, b)), then φ(I(a, b)) ≤ φ(R(a, b)),

or equivalently

I(a, b) ≤ R(a, b).

Analogously, fromφ(R(b, a)) = φ(P (b, a)) + φ(I(b, a)) we have

I(a, b) = I(b, a) ≤ R(b, a).

Therefore,I(a, b) ≤ min(R(a, b), R(b, a)).
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On the other hand, sinceφ(P (a, b)) + φ(P (b, a)) ≤ 1 we have

φ(R(a, b)) + φ(R(b, a))− 2φ(I(a, b)) ≤ 1,

or equivalently,

φ(I(a, b)) ≥ φ(R(a, b)) + φ(R(b, a))− 1
2

. ut

Since the factorization obtained in Theorem 4 is not unique, we can impose
additional conditions. Thus, in the following theorems we also consider the condi-
tions P = R ∩ (R−1)c, P = (R−1)c and I = R ∩ R−1, which are satisfied in
the ordinary framework.

Theorem 5. Let R be a fuzzy weak preference relation and(P, I) an axiomatic
factorization ofR. If φ is a reciprocal order automorphism,T = Wφ and P =
R ∩ (R−1)c, then for all a, b ∈ A,

P (a, b) = max(φ−1(φ(R(a, b))− φ(R(b, a))), 0),
I(a, b) = min(R(a, b), R(b, a)).

Proof . If P = R ∩ (R−1)c, then for all a, b ∈ A the following holds

P (a, b) = T (R(a, b), 1−R(b, a))
= φ−1(max(φ(R(a, b)) + φ(1−R(b, a))− 1, 0))
= φ−1(max(φ(R(a, b))− φ(R(b, a)), 0))
= max(φ−1(φ(R(a, b))− φ(R(b, a))), 0),

and by Theorem 4 we have

φ(I(a, b)) = φ(R(a, b))− φ(P (a, b))
= φ(R(a, b))−max(φ(R(a, b))− φ(R(b, a)), 0)
= φ(R(a, b)) + min(φ(R(b, a))− φ(R(a, b)), 0)
= min(φ(R(b, a)), φ(R(a, b))). ut

Remark 4. If φ is the identity automorphism in Theorem 5, then we obtain the
factorization given by Orlovsky [19]. So, this factorization can be characterized
by P = R ∩ (R−1)c and by (P, I) being an axiomatic factorization ofR for
Łukasiewicz’s t-norm.

When φ is a reciprocal order automorphism,T = Wφ and (P, I) is an ax-
iomatic factorization ofR, then the conditionsP = R∩(R−1)c and I = R∩R−1

are incompatible, as we will see in the next section. However, under the same sup-
positions, the conditionsP = (R−1)c and I = R ∩R−1 are equivalent.

Theorem 6. Let R be a fuzzy weak preference relation and(P, I) an axiomatic
factorization ofR. If φ is a reciprocal order automorphism andT = Wφ, then
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I = R ∩R−1 is equivalent toP = (R−1)c and, when one of these relationships
is satisfied, we have

P (a, b) = 1−R(b, a),
I(a, b) = φ−1(φ(R(a, b)) + φ(R(b, a))− 1),

for all a, b ∈ A.

Proof . If I = R ∩R−1, then for all a, b ∈ A the following holds

I(a, b) = T (R(a, b), R(b, a))
= φ−1(max(φ(R(a, b)) + φ(R(b, a))− 1, 0))
= φ−1(φ(R(a, b)) + φ(R(b, a))− 1),

and by Theorem 4 we have

φ(P (a, b)) = φ(R(a, b))− φ(I(a, b)) = 1− φ(R(b, a))
= φ(1−R(b, a)).

Therefore,P = (R−1)c.
Reciprocally, if P = (R−1)c, then for all a, b ∈ A the following holds

P (a, b) = 1−R(b, a),

and again by Theorem 4 we have

φ(I(a, b)) = φ(R(a, b))− φ(P (a, b))
= φ(R(a, b)) + φ(R(b, a))− 1.

Therefore,I = R ∩R−1. ut

Remark 5. The factorization given in Theorem 6 can also be obtained when we
replaceI = R ∩ R−1 or P = (R−1)c by the following conditions, which are
also satisfied in the ordinary framework:

1. I = (P ∪ P−1)c.
2. R ∩ P−1 = ∅ and R ∪ P−1 = A×A.
3. φ(P (a, b)) + φ(P (b, a)) + φ(I(a, b)) = 1 for all a, b ∈ A.

Remark 6. If φ is the identity automorphism in Theorem 6, then we obtain the
factorization given by Barrett and Pattanaik [4]. So, this factorization can be char-
acterized byI = R ∩ R−1 and by (P, I) being an axiomatic factorization ofR
for Łukasiewicz’s t-norm.

Remark 7. It is possible to make a geometric interpretation of the factorizations
obtained in Theorems 5 and 6. Givena and b, two different elements ofA, and
R a fuzzy weak preference relation, by Theorem 4 we have

φ−1

(
φ(R(a, b)) + φ(R(b, a))− 1

2

)
≤ I(a, b) ≤ min(R(a, b), R(b, a)).
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Since P (a, b) = φ−1(φ(R(a, b)) − φ(I(a, b))), when I(a, b) falls in the range
between the previous numbers we obtain the possible values forP (a, b) and
P (b, a). So, the points(P (a, b), P (b, a)) are in a curve with endpointsX1 =
(x11, x12) and X2 = (x21, x22), where

x11 = φ−1

(
φ(R(a, b))− φ(R(b, a)) + 1

2

)
,

x12 = φ−1

(
φ(R(b, a))− φ(R(a, b)) + 1

2

)
,

x21 = max(φ−1(φ(R(a, b))− φ(R(b, a))), 0),

x22 = max(φ−1(φ(R(b, a))− φ(R(a, b))), 0).

It is easy to check that the pointX1 is in the straight lineP (a, b) + P (b, a) = 1.
Moreover, the pointX2 corresponds to the factorization given in Theorem 5. If
we representY = (R(a, b), R(b, a)) in the same plane asP (a, b) and P (b, a),
the point of the previous curve that is symmetric toY with respect to the straight
line P (a, b) + P (b, a) = 1 is Z = (1−R(b, a), 1−R(a, b)), which corresponds
to the factorization given in Theorem 6 (see Figure 1).

[Insert Fig-
ure 1 about
here]

4 Results based on definitions ofP and I

In the ordinary framework there exists a unique factorization of a weak preference
relation R into a strict preference relationP and an indifference relationI. This
factorization is given byP = R ∩ (R−1)c, which is equivalent toP = (R−1)c,
and I = R ∩R−1. Since in fuzzy logic these definitions ofP are not equivalent,
in this section we consider both definitions together withI = R ∩ R−1 and we
analyze when(P, I) is an axiomatic factorization ofR.

According to the t-norm and the definition ofP that we have chosen, we
obtain different factorizations ofR. For instance, we can point out that when we
use the minimum as the t-norm, we obtain the factorization given by Dutta [12] and
Roubens and Vincke [25], whetherP = R ∩ (R−1)c or whetherP = (R−1)c.

In this section we prove that ifP = R ∩ (R−1)c and I = R ∩ R−1, then
no t-norms exist so that(P, I) is an axiomatic factorization ofR. However, if we
considerP = (R−1)c and I = R ∩R−1, then we establish that(P, I) is an ax-
iomatic factorization ofR only for φ–transforms of Łukasiewicz’s t-norm, where
the order automorphismφ is reciprocal. In this case, we obtain a generalization
of the factorization given by Barrett and Pattanaik [4].

Again, we suppose that the intersection and the union of fuzzy sets are defined
by means of a t-normT and its dual t-conormS, respectively. We begin showing
some properties ofP = R ∩ (R−1)c and I = R ∩ R−1. These properties are
necessary in order that(P, I) be an axiomatic factorization ofR.

Proposition 2. Let R be a fuzzy weak preference relation,P = R∩ (R−1)c and
I = R ∩R−1. Then the following statements hold:
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1. P is irreflexive.
2. P is asymmetric.
3. I is reflexive.
4. I is symmetric.

Proof

1. P (a, a) = T (R(a, a), 1−R(a, a)) = T (1, 0) = 0 for all a ∈ A.
2. Given a, b ∈ A, the following is satisfied:

T (1−R(a, b), 1−R(b, a)) = 1− S(R(a, b), R(b, a)) = 0.

Then, by the commutativity and the associativity ofT we have

T (P (a, b), P (b, a)) = T (T (R(a, b), 1−R(b, a)), T (R(b, a), 1−R(a, b)))
= T (T (R(a, b), R(b, a)), T (1−R(b, a), 1−R(a, b)))
= T (T (R(a, b), R(b, a)), 0) = 0.

3. I(a, a) = T (R(a, a), R(a, a)) = T (1, 1) = 1 for all a ∈ A.
4. Given a, b ∈ A, we have

I(a, b) = T (R(a, b), R(b, a)) = T (R(b, a), R(a, b)) = I(b, a). ut

Now we study the requirementsP ∩ I = ∅ and R = P ∪ I. In the following
remark we give a condition that the t-normT has to fulfill so thatP ∩ I = ∅ is
satisfied for any fuzzy weak preference relationR.

Remark 8. Given a fuzzy weak preference relationR, if P = R ∩ (R−1)c and
I = R ∩R−1, then P ∩ I = ∅ holds if and only if

T (P (a, b), I(a, b)) = T (T (R(a, b), 1−R(b, a)), T (R(a, b), R(b, a))) = 0,

for all a, b ∈ A. If x = R(a, b) and y = R(b, a), then the previous condition is
satisfied for any fuzzy weak preference relationR if and only if

T (T (x, 1− y), T (x, y)) = 0,

for all x, y ∈ [0, 1] such thatS(x, y) = 1.

The t-norms that satisfy the last condition are also characterized through the
following condition.

Proposition 3. Let T be a t-norm. Then the following statements are equivalent:

1. T (T (x, 1− y), T (x, y)) = 0 for all x, y ∈ [0, 1] such thatS(x, y) = 1.
2. T (x, 1− x) = 0 for all x ∈ [0, 1].

Proof

1 ⇒ 2: If x = 1, then for all y ∈ [0, 1] we haveS(1, y) = 1 and

T (y, 1− y) = T (1− y, y) = T (T (1, 1− y), T (1, y)) = 0.

2 ⇒ 1: Given x, y ∈ [0, 1], by the commutativity and the associativity ofT we
have

T (T (x, 1− y), T (x, y)) = T (T (x, x), T (1− y, y))
= T (T (x, x), 0) = 0. ut
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When we consider continuous t-norms, the following result, given by Fodor
and Roubens [14, p. 10], allows us to characterize the fuzzy binary relationsP
and I that satisfy the requirementP ∩ I = ∅.
Proposition 4. Let T be a continuous t-norm. Then the following conditions are
equivalent:

1. T (x, 1− x) = 0 for all x ∈ [0, 1].
2. There exists an order automorphismφ such thatT = Wφ and φ(1 − x) ≤

1− φ(x) for all x ∈ [0, 1].

Corollary 2 . Let R be a fuzzy weak preference relation,T a continuous t-norm,
P = R∩(R−1)c and I = R∩R−1. Then the following conditions are equivalent:

1. P ∩ I = ∅.
2. There exists an order automorphismφ satisfyingφ(1−x) ≤ 1−φ(x) for all

x ∈ [0, 1] such thatT = Wφ and, consequently, for alla, b ∈ A,

P (a, b) = φ−1(max(φ(R(a, b)) + φ(1−R(b, a))− 1, 0)),
I(a, b) = φ−1(max(φ(R(a, b)) + φ(R(b, a))− 1, 0)).

Proof . It is sufficient to take into account Remark 8 and Propositions 3 and 4.ut

Next we focus our attention onR = P ∪ I. In the following remark we give
a condition that the t-normT and its dual t-conormS have to fulfill in order for
this requirement to be satisfied for any fuzzy weak preference relationR.

Remark 9. Given a fuzzy weak preference relationR, if P = R ∩ (R−1)c and
I = R ∩R−1, then R = P ∪ I holds if and only if

R(a, b) = S(P (a, b), I(a, b))
= S(T (R(a, b), 1−R(b, a)), T (R(a, b), R(b, a))),

for all a, b ∈ A. If x = R(a, b) and y = R(b, a), then the previous condition is
satisfied for any fuzzy weak preference relationR if and only if

S(T (x, 1− y), T (x, y)) = x,

for all x, y ∈ [0, 1] such thatS(x, y) = 1.

In this context we can point out the result given by Alsina [1] (see also Fodor
and Roubens [14, p. 73]).

Theorem 7. There exists no t-normT with dual t-conormS such that

S(T (x, 1− y), T (x, y)) = x,

for all x, y ∈ [0, 1].

The same result is obtained when we consider only the elements of[0, 1]
which fulfill S(x, y) = 1. In order to prove this, we give a proof similar to that
provided by Fodor and Roubens [14, p. 73]. Based on this result, we obtain that
R = P ∪ I is not satisfied for any t-normT .
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Theorem 8. There exists no t-normT with dual t-conormS such that

S(T (x, 1− y), T (x, y)) = x,

for all x, y ∈ [0, 1] such thatS(x, y) = 1.

Proof . The theorem is proven by contradiction. Suppose there existT and S that
satisfy the previous condition. If we considerx = 1, then for all y ∈ [0, 1] we
haveS(1, y) = 1 and

T (y, 1− y) = 1− S(1− y, y) = 1− S(T (1, 1− y), T (1, y)) = 1− 1 = 0.

On the other hand, ifx = y = 0.5, then S(0.5, 0.5) = 1 − T (0.5, 0.5) = 1 and
we have

0.5 = S(T (0.5, 0.5), T (0.5, 0.5)) = S(0, 0) = 0,

a contradiction. ut

Corollary 3 . There is no t-normT with dual t-conormS such that for any fuzzy
weak preference relationR the conditionR = P ∪ I holds if P = R ∩ (R−1)c

and I = R ∩R−1.

Proof . It is an inmediate consequence of Remark 9 and Theorem 8.ut

So, given a fuzzy weak preference relationR and any t-normT , if P = R ∩
(R−1)c and I = R∩R−1, then (P, I) cannot be an axiomatic factorization ofR.
Since P = (R−1)c is also satisfied in the ordinary framework, next we consider
this definition. In this case, the valueP (a, b) = 1−R(b, a) does not depend on the
choice of the t-norm. Moreover, givenB ⊆ A, we would like to emphasize that
the greatest set2 in B defined by Basu [5] and the set of nondominated elements3

defined by Orlovsky [19] are equal using this definition ofP . These sets, as Basu
[5] points out, are a formalization of the idea of a set of best elements.

Firstly we prove thatP = (R−1)c is irreflexive and asymmetric.

Proposition 5. Let R be a fuzzy weak preference relation. IfP = (R−1)c, then
the following statements hold:

1. P is irreflexive.
2. P is asymmetric.

Proof

1. P (a, a) = 1−R(a, a) = 0 for all a ∈ A.
2. Given a, b ∈ A, we have

T (P (a, b), P (b, a)) = T (1−R(b, a), 1−R(a, b))
= 1− S(R(b, a), R(a, b)) = 0. ut

2 G(B, R)(a) = min
b∈B

R(a, b).
3 M(B, R)(a) = 1−max

b∈B
P (b, a).
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Again, with the new definition ofP , we analyze the requirementsP ∩ I = ∅
and R = P ∪I. Analogously to Remark 8, we show a condition that the t-normT
has to fulfill so thatP ∩ I = ∅ is satisfied for any fuzzy weak preference relation
R.

Remark 10. Given a fuzzy weak preference relationR, if P = (R−1)c and I =
R ∩R−1, then P ∩ I = ∅ holds if and only if

T (P (a, b), I(a, b)) = T (1−R(b, a), T (R(a, b), R(b, a))) = 0,

for all a, b ∈ A. If x = R(a, b) and y = R(b, a), then the previous condition is
satisfied for any fuzzy weak preference relationR if and only if

T (1− y, T (x, y)) = 0,

for all x, y ∈ [0, 1] such thatS(x, y) = 1.

Next we give the same requisite as in Proposition 3 in order to characterize
the above condition. Therefore, since the t-norms are equal, the family of relations
I = R ∩ R−1 obtained under the assumptionP ∩ I = ∅ coincides forP =
(R−1)c and P = R ∩ (R−1)c. Moreover, when the t-norm is continuous, we
know it explicitly.

Proposition 6. Let T be a t-norm. Then the following conditions are equivalent:

1. T (1− y, T (x, y)) = 0 for all x, y ∈ [0, 1] such thatS(x, y) = 1.
2. T (x, 1− x) = 0 for all x ∈ [0, 1].

Proof

1 ⇒ 2: If x = 1, then for all y ∈ [0, 1] we haveS(1, y) = 1 and

T (y, 1− y) = T (1− y, y) = T (1− y, T (1, y)) = 0.

2 ⇒ 1: Given x, y ∈ [0, 1], by the commutativity and the associativity ofT we
have

T (1− y, T (x, y)) = T (T (1− y, y), x) = T (0, x) = 0. ut

Corollary 4 . Let R be a fuzzy weak preference relation,T a continuous t-norm,
P = (R−1)c and I = R ∩R−1. Then the following conditions are equivalent:

1. P ∩ I = ∅.
2. There exists an order automorphismφ satisfyingφ(1−x) ≤ 1−φ(x) for all

x ∈ [0, 1] such thatT = Wφ and, consequently, for alla, b ∈ A,

P (a, b) = 1−R(b, a),
I(a, b) = φ−1(max(φ(R(a, b)) + φ(R(b, a))− 1, 0)).

Proof . It is sufficient to take into account Remark 10 and Propositions 4 and 6.
ut
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Now we studyR = P ∪ I. Firstly we give a condition that the t-normT has
to fulfill in order for this requirement to be satisfied for any fuzzy weak preference
relation R.

Remark 11. Given a fuzzy weak preference relationR, if P = (R−1)c and I =
R ∩R−1 then R = P ∪ I holds if and only if

R(a, b) = S(P (a, b), I(a, b)) = 1− T (1− P (a, b), 1− I(a, b))
= 1− T (R(b, a), 1− T (R(a, b), R(b, a))),

for all a, b ∈ A. If x = R(a, b) and y = R(b, a), then the previous condition is
satisfied for any fuzzy weak preference relationR if and only if

T (y, 1− T (x, y)) = 1− x,

for all x, y ∈ [0, 1] such thatS(x, y) = 1.

In the following theorem we characterize the continuous t-norms that sat-
isfy the preceding condition by means ofφ–transforms of Łukasiewicz’s t-norm,
whereφ is reciprocal.

Theorem 9. Let T be a continuous t-norm. Then the following conditions are
equivalent:

1. T (y, 1− T (x, y)) = 1− x for all x, y ∈ [0, 1] such thatS(x, y) = 1.
2. There exists a reciprocal order automorphismφ such thatT = Wφ.

Proof

1 ⇒ 2: If x = 1 then for all y ∈ [0, 1] we haveS(1, y) = 1 and

T (y, 1− y) = T (y, 1− T (1, y)) = 0.

By Proposition 4 there exists an order automorphismφ such thatT = Wφ and
φ(1−x) ≤ 1−φ(x) for all x ∈ [0, 1]. In order to obtain the remaining inequality
for all x ∈ (0, 1) (if x = 0 or x = 1 it is obvious thatφ(1 − x) ≥ 1 − φ(x)),
firstly we show thatφ(x) + φ(y) > 1 for all x, y ∈ (0, 1] such thaty > 1 − x.
This is proven by contradiction. Suppose it were otherwise. Then

T (x, y) = φ−1(max(φ(x) + φ(y)− 1, 0)) = 0.

SinceS(x, y) ≥ S(x, 1− x) = 1− T (1− x, x) = 1 we have

T (y, 1− T (x, y)) = T (y, 1) = y > 1− x,

which contradicts the hypothesis. Finally, givenx ∈ (0, 1), let {yn}∞n=1 be a
strictly decreasing sequence in(0, 1] converging to1−x. Sinceyn > 1−x, then
φ(x) + φ(yn) > 1 for all n ∈ IN. By the continuity ofφ we have

φ(x) + φ(1− x) = lim
n→∞

(φ(x) + φ(yn)) ≥ 1.

2 ⇒ 1: If S(x, y) = 1 then T (1 − x, 1 − y) = 1 − S(x, y) = 0. On the other
hand,

T (1− x, 1− y) = φ−1(max(φ(1− x) + φ(1− y)− 1, 0))
= φ−1(max(1− φ(x)− φ(y), 0)).
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So, φ(x) + φ(y) ≥ 1 and, consequently,

T (x, y) = φ−1(max(φ(x) + φ(y)− 1, 0)) = φ−1(φ(x) + φ(y)− 1).

By the reciprocity ofφ−1 we have1− T (x, y) = φ−1(2− φ(x)− φ(y)). There-
fore, for all x, y ∈ [0, 1] such thatS(x, y) = 1 the following holds

T (y, 1− T (x, y)) = φ−1(max(φ(y) + φ(1− T (x, y))− 1, 0))
= φ−1(max(1− φ(x), 0)) = φ−1(1− φ(x))
= 1− x. ut

In the following corollary we show the fuzzy binary relationsP = (R−1)c

and I = R ∩R−1 for which R = P ∪ I holds.

Corollary 5 . Let R be a fuzzy weak preference relation,T a continuous t-norm,
P = (R−1)c and I = R ∩R−1. Then the following conditions are equivalent:

1. R = P ∪ I.
2. There exists a reciprocal order automorphismφ such thatT = Wφ and,

consequently, for alla, b ∈ A,

P (a, b) = 1−R(b, a),
I(a, b) = φ−1(φ(R(a, b)) + φ(R(b, a))− 1).

Proof

1 ⇒ 2: Given a, b ∈ A, by Remark 11 and Theorem 9 the following holds

P (a, b) = 1−R(b, a),
I(a, b) = φ−1(max(φ(R(a, b)) + φ(R(b, a))− 1, 0)).

Since φ is reciprocal andR is complete we haveφ(R(a, b)) + φ(R(b, a)) ≥ 1
for all a, b ∈ A; and consequently

I(a, b) = φ−1(φ(R(a, b)) + φ(R(b, a))− 1).

2 ⇒ 1: Obvious. ut

Finally, when we require thatP = (R−1)c, I = R ∩ R−1 and that(P, I)
should be an axiomatic factorization ofR, we again obtain a generalization of the
factorization given by Barrett and Pattanaik [4].

Corollary 6 . Let R be a fuzzy weak preference relation,T a continuous t-norm,
P = (R−1)c and I = R ∩R−1. Then the following conditions are equivalent:

1. (P, I) is an axiomatic factorization ofR.
2. There exists a reciprocal order automorphismφ such thatT = Wφ and,

consequently, for alla, b ∈ A,

P (a, b) = 1−R(b, a),
I(a, b) = φ−1(φ(R(a, b)) + φ(R(b, a))− 1).

Proof . It is an inmediate consequence of Propositions 2 and 5 and Corollaries 4
and 5. ut
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5 Conclusion

In this paper we study the factorization of fuzzy weak preference relations by
means of two courses of action: axioms and definitions of strict preference and
indifference. In both ways we conclude that the generalizations of the factorization
given by Barrett and Pattanaik [4], i.e.

P (a, b) = 1−R(b, a),
I(a, b) = φ−1(φ(R(a, b)) + φ(R(b, a))− 1),

where φ is a reciprocal order automorphism, seem the best because they satisfy
the following properties, which are also verified in the ordinary framework:

1. P is irreflexive and asymmetric.
2. I is reflexive and symmetric.
3. P ∩ I = ∅.
4. R = P ∪ I.
5. P = (R−1)c.
6. I = R ∩R−1.
7. I = (P ∪ P−1)c.
8. R ∩ P−1 = ∅.
9. R ∪ P−1 = A×A.

10. φ(P (a, b)) + φ(P (b, a)) + φ(I(a, b)) = 1 for all a, b ∈ A.

Changing the role played byP and P−1, or through De Morgan laws, we
can obtain other properties. Moreover, whenφ is the identity automorphism, the
last condition given above has been interpreted by Barrett and Pattanaik [4]. Thus,
their factorization allows us to represent the preferences when individuals utilize
several criteria with different weights to compare the alternatives.

On the other hand, Richardson [24, p. 363] points out that if we consider
P (a, b) = 1−R(b, a), then P (a, b) is insensitive toR(a, b) (a similar argumen-
tation is given by Dasgupta and Deb [10, pp. 492–493]). For instance,P (a, b)
takes the same value in the two situations{R(a, b) = 1, R(b, a) = 0.999} and
{R(a, b) = 0.001, R(b, a) = 0.999}. However, this also happens in the ordinary
framework;P (a, b) takes the same value when{R(a, b) = 1, R(b, a) = 1} and
{R(a, b) = 0, R(b, a) = 1}.

Finally, we also have proven that theφ–transforms of Łukasiewicz’s t-norm
are the most interesting t-norms for representing the intersection of fuzzy sets.
Since in fuzzy logic transitivity is defined asR(a, c) ≥ T (R(a, b), R(b, c)), where
T is a t-norm (see Fodor and Roubens [14, p. 53]), it seems that the best-suited
definition of transitivity isR(a, c) ≥ φ−1(φ(R(a, b))+φ(R(b, c))− 1). Whenφ
is the identity automorphism we obtain the usual conditionR(a, c) ≥ R(a, b) +
R(b, c)− 1. The relationships between the transitivity ofR and the transitivity of
P and I have been widely studied by Dasgupta and Deb [10].
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