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Abstract. In this paper we determine the number of positive
integer sequences a1, a2, . . . , ak such that 1 ≤ a1 ≤ · · · ≤ ak ≤
m and ai ≥ i for all i ∈ {1, . . . , k}. After that, we apply
this result to calculate the number of anonymous, neutral and
monotonic social welfare functions when only two alternatives
are considered.

1. Introduction

Binomial coefficients are closely related to counting problems and
they appear in many scientific fields. As is well known, the binomial
coefficient

(
m
k

)
is the number of k-element subsets of {1, . . . ,m}.

When the repetition of elements is allowed, we find the multichoose
coefficient,

((
m
k

))
, defined by((

m

k

))
=

(
m+ k − 1

k

)
.

An equivalent interpretation is that
((
m
k

))
is the number of positive

integer sequences a1, a2, . . . , ak such that 1 ≤ a1 ≤ · · · ≤ ak ≤ m
(see, for instance, Benjamin and Quinn [1]).

In this paper we focus on the previous sequences whose elements
satisfy an additional condition, ai ≥ i for all i ∈ {1, . . . , k}, and
we calculate their number. Next, this number will be applied to
the field of Social Choice by determining the number of social wel-
fare functions (SWFs) that satisfy anonymity, neutrality and mono-
tonicity.

The paper is organized in two sections. The first section provides
the main result of this paper. In the second section we apply this
result to Social Choice Theory.
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2. The result

Before providing the result, we recall the definition and some
properties of binomial coefficients (see, for instance, Riordan [7]
and Benjamin and Quinn [1]).

Remark 1. Let m ∈ N and k ∈ Z. Then:

(1)

(
m

k

)
=


m!

k!(m− k)!
, if 0 ≤ k ≤ m,

0, otherwise.

(2)

(
m

k

)
=

(
m

m− k

)
.

(3)

(
m

k

)
+

(
m

k + 1

)
=

(
m+ 1

k + 1

)
.

(4) If k ≥ 0, then
m∑
i=k

(
i

k

)
=

(
m+ 1

k + 1

)
.

Now we determine the number of positive integer sequences a1,
a2, . . . , ak such that 1 ≤ a1 ≤ · · · ≤ ak ≤ m and ai ≥ i for all
i ∈ {1, . . . , k}. For any set S, #S will denote the cardinal of S.

Proposition 2. Given k,m ∈ N with k ≥ 1 and m ≥ k, let
smk = #Smk , where

Smk =

{
(a1, . . . , ak) ∈ Nk |

1 ≤ a1 ≤ · · · ≤ ak ≤ m,

ai ≥ i, i = 1, . . . , k

}
.

Then

smk =

(
m+ k − 1

k

)
−
(
m+ k − 1

k − 2

)
.

Proof. The proof is by induction on k. If k = 1, then

sm1 = #{a1 ∈ N | 1 ≤ a1 ≤ m} = m

=

(
m+ 1− 1

1

)
−
(
m+ 1− 1

−1

)
,

where the last equality is due to (1) of Remark 1. Suppose now the
result is true for k = p, where p ≤ m − 1, and let’s see that the
claim holds for k = p+ 1. Since m ≥ p+ 1, smp+1 can be calculated
taking into account that the largest element of the sequence, ap+1,
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ranges between p+ 1 and m, that is,

Smp+1 =

{
(a1, . . . , ap+1) ∈ Np+1 |

1 ≤ a1 ≤ · · · ≤ ap+1 ≤ m,

ai ≥ i, i = 1, . . . , p+ 1

}
=

m⋃
j=p+1

{
(a1, . . . , ap, j) ∈ Np+1 |

1 ≤ a1 ≤ · · · ≤ ap ≤ j,

ai ≥ i, i = 1, . . . , p

}
.

Therefore, taking into account (4) and (2) of Remark 1, we have

smp+1 =
m∑

j=p+1

sjp =
m∑

j=p+1

[(
j + p− 1

p

)
−
(
j + p− 1

p− 2

)]

=

m+p−1∑
i=2p

(
i

p

)
−

m+p−1∑
i=2p

(
i

p− 2

)
=

(
m+p−1∑
i=p

(
i

p

)
−

2p−1∑
i=p

(
i

p

))

−

(
m+p−1∑
i=p−2

(
i

p− 2

)
−

2p−1∑
i=p−2

(
i

p− 2

))

=

((
m+ p

p+ 1

)
−
(

2p

p+ 1

))
−
((

m+ p

p− 1

)
−
(

2p

p− 1

))
=

(
m+ p

p+ 1

)
−
(
m+ p

p− 1

)
. �

3. An application to Social Choice Theory

One of the most important issues in the field of Social Choice is
the analysis of social welfare functions (SWFs), that is, procedures
for determining a collective preference from the opinions of a group
of n individuals on a set of alternatives. The simplest case is when
only two alternatives are considered. However, this case is not
trivial and it has generated a vast literature on the subject. The
aim of this section is to determine, in this case, the number of
SWFs that satisfy the following properties: anonymity, neutrality
and monotonicity. For this, we will apply the result obtained in the
previous section.

Next we introduce basic concepts and notation on SWFs. Let
N = {1, . . . , n} be the set of voters, with n ≥ 2, and x, y two al-
ternatives. The individual preferences between both alternatives
are described by a profile D = (d1, . . . , dn), where di is 1,−1 or 0
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depending on whether individual i prefers x to y, y to x or is indif-
ferent between both alternatives. The set of profiles of preferences
will be denoted by D.

Given D,D′ ∈ D and σ a permutation of N , we will use the
following notation: n+(D) = #{i ∈ N | di = 1}, n−(D) = #{i ∈
N | di = −1}, −D = (−d1, . . . ,−dn), Dσ = (dσ(1), . . . , dσ(n)) and
D′ ≥ D will mean d′i ≥ di for all i ∈ N . Moreover, given a ∈ R,
bac will denote the integer part of a, i.e., the largest integer smaller
than or equal to a.

For each profile of preferences, the collective preference will be
obtained by means of SWFs.

Definition 3. A SWF is a mapping F : D −→ {−1, 0, 1}.

The possible values of F , 1, 0, and −1, have a similar interpre-
tation as that in the case of individual preferences.

Next we present some well-known properties of SWFs: Anony-
mity, neutrality and monotonicity. The first one, anonymity, guar-
antees an equalitarian treatment for all individuals. Similarly, neu-
trality assures that both alternatives are treated equally. Finally,
monotonicity means that increased support for an alternative does
not hurt this alternative.

Definition 4. Let F be a SWF.

(1) F is anonymous if for all permutation σ of N and all profile
D ∈ D we have F (Dσ) = F (D).

(2) F is neutral if for all profile D ∈ D we have F (−D) =
−F (D).

(3) F is monotonic if for all pair of profile D,D′ ∈ D such that
D′ ≥ D we have F (D′) ≥ F (D).

It is worth noting that if F is anonymous, then the value F (D)
depends on only of n+(D) and n−(D). On the other hand, any
neutral SWF is characterized by the set F−1({1}), since

F−1({−1}) = {D ∈ D | −D ∈ F−1({1})},
F−1({0}) = D \

(
F−1({1}) ∪ F−1({−1})

)
.

It is easy to check that there exist 33n different SWFs. As new
properties are imposed on the SWFs, the number of them is di-
minished. For instance, Perry and Powers [5, 6] have calculated
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the number of SWFs that satisfy anonymity, 3(n2+3n+2)/2, anony-
mity and neutrality, 3b(n

2+2n+1)/4c, and anonymity and monotonic-
ity,

(
2n+3
n+1

)
. On the other hand, Young et al. [8] have determined

the number of SWFs that satisfy anonymity, neutrality and mono-
tonicity,

(
n+1
bn
2
c+1

)
. It is worth noting that similar counting problems

have also been considered by Freixas and Zwicker [4] and Campbell
et al. [2].

In the sequel we get the same number as obtained by Young et
al. [8], although by a different approach. From a result given by
Fishburn [3, p. 56], we reduce SWFs to positive integer sequences
that express the number of votes needed for an alternative to win,
according to the number of votes obtained by the other alternative.
However, Young et al. [8] specify these sequences according to the
number of tie votes. For this reason, these sequences are quite
different and the procedure for obtaining the number of anonymous,
neutral and monotonic SWFs is also completely different.

We begin with the result given by Fishburn [3, p. 56], which can
be given as a characterization of anonymous, neutral and monotonic
SWFs.

Theorem 5. Let F be a SWF. Then the following statements
are equivalent:

(1) F is anonymous, neutral and monotonic.
(2) There exist integers r0 ≤ r1 ≤ · · · ≤ rbn−1

2 c that satisfy

ri ≥ i for all i ∈
{

0, 1, . . . ,
⌊
n−1
2

⌋}
and such that

F (D) =

 1, if n+(D) > rn−(D),
−1, if n−(D) > rn+(D),

0, otherwise.

Let R be the set of vectors
(
r0, r1, . . . , rbn−1

2 c
)

such that the

integers ri satisfy the conditions given in the previous theorem.
According to this theorem, given r ∈ R, we can associate with r
an anonymous, neutral and monotonic SWF, Fr.

The number of anonymous, neutral and monotonic SWFs is going
to be obtained through the vectors of R. However, given that
different vectors r, r′ ∈ R can generate the same SWF, we firstly
need to characterize these vectors. For this, given r ∈ R, we will
use the following notation:

Nr =
{
i ∈
{

0, 1, . . . ,
⌊
n−1
2

⌋}
| i+ ri ≤ n− 1

}
.



6 BONIFACIO LLAMAZARES

The set Nr is closely connected with the SWF Fr, as we show in
the following lemma.

Lemma 6. Let r ∈ R. Then the following statements are
equivalent:

(1) i ∈ Nr.
(2) There exists D ∈ D such that n−(D) = i and Fr(D) = 1.

Proof.
(1)⇒ (2): Given i ∈ Nr, let D ∈ D a profile such that n−(D) = i

and n+(D) = ri + 1. This profile exists because n−(D) + n+(D) =
i+ ri + 1 ≤ n. Moreover, Fr(D) = 1 since n+(D) > rn−(D).

(2)⇒ (1): Suppose that there exists D ∈ D such that n−(D) = i
and Fr(D) = 1. Since Fr(D) = 1, we have n+(D) > rn−(D) = ri.
Therefore, i + ri < n−(D) + n+(D) ≤ n and, consequently, i ∈
Nr. �

Now, we are going to characterize the vectors that generate the
same SWFs.

Proposition 7. Let r, r′ ∈ R. Then the following statements
are equivalent:

(1) Fr = Fr′ .
(2) Nr = Nr′ and ri = r′i for all i ∈ Nr.

Proof.
(1)⇒ (2): First, we are going to prove that Nr = Nr′ . By Lemma

6, i ∈ Nr if and only if there exists D ∈ D such that n−(D) = i
and Fr(D) = 1. Since Fr = Fr′ , then there exists D ∈ D such
that n−(D) = i and Fr′(D) = 1 and, again by Lemma 6, this is
equivalent to i ∈ Nr′ .

Now, we are going to prove that ri = r′i for all i ∈ Nr. This is
proven by contradiction. Suppose that there exists i ∈ Nr such that
ri 6= r′i. We can suppose, without loss of generality, that ri < r′i.
Consider a profile D ∈ D such that n−(D) = i and n+(D) = ri + 1
(this profile exists because n−(D) + n+(D) = i + ri + 1 ≤ n). For
this profile we have Fr(D) = 1 and Fr′(D) < 1; i.e., a contradiction.

(2) ⇒ (1): Since Fr and Fr′ are neutral, it is sufficient to prove
that Fr(D) = 1 if and only if Fr′(D) = 1 for all D ∈ D. Let D ∈ D
such that Fr(D) = 1. By Lemma 6, n−(D) ∈ Nr, and

Fr(D) = 1 ⇒ n+(D) > rn−(D) ⇒ n+(D) > r′n−(D) ⇒ Fr′(D) = 1.
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In a similar way we can prove that Fr′(D) = 1 ⇒ Fr(D) = 1 for
all D ∈ D. �

The previous proposition allows us to determine, in a methodical
way, the SWFs that satisfy anonymity, neutrality and monotonicity.
Let’s see an example.

Example 8. Consider the case n = 3. For this value,

R = {(r0, r1) ∈ N2 | 0 ≤ r0 ≤ r1, r1 ≥ 1},

and given r ∈ R, Nr = {i ∈ {0, 1} | ri ≤ 2− i}. Therefore:

(1) If Nr = ∅, then we have the null SWF: Fr(D) = 0 for all
D ∈ D.

(2) If Nr = {0}, then r0 can take any value between 0 and 2.
So,
(a) If r0 = 0, then we obtain Pareto majority:

Fr(D) = 1 ⇔ n+(D) > 0 and n−(D) = 0.

(b) If r0 = 1, then we have the SWFs defined by:

Fr(D) = 1 ⇔ n+(D) > 1 and n−(D) = 0.

(c) If r0 = 2, then we obtain unanimous majority:

Fr(D) = 1 ⇔ n+(D) = 3.

(3) If Nr = {0, 1}, then r1 = 1 and 0 ≤ r0 ≤ r1. Thus,
(a) If (r0, r1) = (0, 1), then we have simple majority:

Fr(D) = 1 ⇔ n+(D) > n−(D).

(b) If (r0, r1) = (1, 1), then we obtain absolute majority:

Fr(D) = 1 ⇔ n+(D) > 1.

According to Proposition 7, the number of anonymous, neutral
an monotonic SWFs, Sn, can be determined through the following
expression:

Sn = 1 +

bn+1
2 c∑
j=1

#Nn−j
j ,

where Nn−j
j , j = 1, . . . ,

⌊
n+1
2

⌋
, are the sets defined by

Nn−j
j =

{
(r0, . . . , rj−1) ∈ Nj |

0 ≤ r0 ≤ · · · ≤ rj−1 ≤ n− j,
ri ≥ i, i = 0, . . . , j − 1

}
.
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Consider now the function h : Nn−j
j −→ Sn+1−j

j defined by

h(r0, . . . , rj−1) = (r0 + 1, . . . , rj−1 + 1).

It is easy to check that h is a biyection. Therefore, by Proposition 2,
we have #Nn−j

j = #Sn+1−j
j = sn+1−j

j =
(
n
j

)
−
(
n
j−2

)
.

The previous remark allows us to get the number of SWFs that
satisfy anonymity, neutrality and monotonicity.

Proposition 9. The number of anonymous, neutral and mono-

tonic SWFs is

(
n+ 1⌊
n+1
2

⌋).
Proof. According with (1) and (3) of Remark 1, we have:

Sn = 1 +

bn+1
2 c∑
j=1

sn+1−j
j =

(
n

0

)
+

bn+1
2 c∑
j=1

[(
n

j

)
−
(

n

j − 2

)]

=

bn+1
2 c∑
j=0

(
n

j

)
−
bn+1

2 c−2∑
j=0

(
n

j

)
=

(
n⌊

n+1
2

⌋
− 1

)
+

(
n⌊
n+1
2

⌋)

=

(
n+ 1⌊
n+1
2

⌋). �
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