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Positional voting systems generated by cumulative standings
functions

Bonifacio Llamazares · Teresa Peña

Abstract Positional voting systems are a class of voting systems where voters rank
order the candidates from best to worst and a set of winners is selected using the
positions of the candidates in the voters’ preference orders. Although scoring rules
are the best known positional voting systems, this class includes other voting systems
proposed in the literature as, for example, the Majoritarian Compromise or the q-
Approval Fallback Bargaining. In this paper we show that some of these positional
voting systems can be integrated in a model based on cumulative standings functions.
The proposed model allows us to establish a general framework for the analysis of
these voting systems, to extend to them some results in the literature for the particular
case of the scoring rules, and also facilitates the study of the social choice properties
considered in the paper: monotonicity, Pareto-optimality, immunity to the absolute
winner paradox, Condorcet consistency, immunity to the absolute loser paradox and
immunity to the Condorcet loser paradox.

Keywords Positional voting systems · Cumulative standings functions · Social
choice properties

1 Introduction

In many voting systems, voters’ preferences on a set of candidates are represented
by linear orderings (complete, transitive and antisymmetric binary relations). A well-
known procedure to aggregate the preferences of the voters and to obtain the win-
ning candidates consists in assigning a fixed number of points, sk, to the k-th most
preferred candidate of each voter and electing the candidate with the highest score
(scoring rules). Besides the scoring rules, there exist other methods (which are less
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known than the previous ones) that provide a set of winning candidates from the
number of first, second, . . . , mth ranks obtained by them. These procedures are called
positional voting systems (PVSs)1. Some examples of these voting systems are the
Lexicographic rule, the Condorcet’s practical method described by Nurmi (1999,
p. 21), the Majoritarian Compromise introduced by Sertel and Yilmaz (1999), the
q-Approval Fallback Bargaining suggested by Brams and Kilgour (2001) and some
models based on mathematical programming techniques proposed by Obata and Ishii
(2003), Contreras et al (2005) and Llamazares and Peña (2013)2.

It is known that all these methods may provide different sets of winning can-
didates (in this respect, and for some of them, see Merlin et al (2006), and also
Sheikhmohammady et al (2010), where a practical application can be found). So,
in order to identify the best rule to use in each situation we need to know which
social choice properties are met by each of them. Monotonicity, Pareto-optimality,
immunity to the absolute winner paradox, Condorcet consistency, immunity to the
absolute loser paradox and immunity to the Condorcet loser paradox are considered
as “especially desirable” social choice properties by some authors (see, for instance,
Felsenthal (2012)).

In this paper we set up a model that allows us to unify the study of the PVSs
above mentioned. In this model we consider for each candidate the number of votes
obtained by him/her until each kth place, called his/her cumulative standings (on
this, see Fishburn 1974, Moulin 1988, cap. 9, Stein et al 1994, Green et al 1996 and
Llamazares and Peña 2009, 2013, 2014), and assign a score to each candidate by
using a monotonic (nondecreasing) function of his/her cumulative standings (called
cumulative standings function). Those candidates having the highest total score are
the winners.

The model proposed allows us to extend to all PVSs generated by cumulative
standings functions some known results for the particular case of the scoring rules.
We also show that the PVSs previously mentioned can be represented by using this
general framework and that new PVSs can be defined by considering other cumulative
standings function. Finally, we take advantage of this representation for analyzing
their social choice properties.

The paper is organized as follows. In Section 2 we introduce the cumulative stand-
ings functions, that derive a score for each candidate from the number of cumulative
standings that he/she has obtained. In Section 3 we describe with the help of these
functions some of the PVSs proposed in the literature and define a new PVS by using
a cumulative standings function equivalent (in this context) to the geometric mean. In
Section 4 the cumulative standing functions are used to analyze which desirable so-
cial choice properties are met by each of the procedures. Finally, Section 5 is devoted
to conclusions. All proofs are in the Appendix.

1 As far as we know this term first appears in Gärdenfors (1973).
2 It is worth noting that there exist other PVSs based on mathematical programming techniques that

have an important drawback from the point of view of social choice theory: The relative order between two
candidates may be altered when the number of first, second, . . . , mth ranks obtained by other candidates
changes, although there are not any variations in the number of first, second, . . . , mth ranks obtained by
both candidates (see Llamazares and Peña 2009). The PVSs with this drawback are not considered in this
paper.
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2 PVSs and cumulative standings functions

Throughout the paper, we will use the following notation: Given two vectors x,y ∈
Rk, x ≥ y denotes xi ≥ yi for all i ∈ {1, . . . ,k}; x > y means that x ≥ y and x 6= y;
x� y means that xi > yi for all i∈ {1, . . . ,k}. Moreover, given a∈R, bacwill denote
the integer part of a, i.e., the largest integer smaller than or equal to a.

Let A = {A1, . . . ,Am} be a set of candidates, with m≥ 3. A linear order on A is
a complete, transitive and antisymmetric binary relation on A . A linear order on A
where A1 is the most preferred candidate, A2 is the second most preferred candidate
and so on will be written in the usual way as A1 A2 . . .Am−1 Am. Let P be the set
of linear orders on A . A profile p is a vector of linear orders on A , where each
component represents the preferences of a voter. A voting system (also called social
choice rule) is a function C :

⋃
n≥2

Pn −→ 2A \{∅}.

PVSs are a class of voting systems where the set of winners is determined using
the positions of the candidates in the voter’s preference order, that is, given a profile
p, PVSs only need the number of votes obtained by each candidate in each kth place
for selecting the winning candidates. In this paper, instead of using those values, we
consider the number of votes obtained by each candidate until the kth place (called
his/her cumulative standings). In this way, if we denote by vi

k the number of kth place
ranks that candidate Ai occupies, his/her cumulative standings3, V i

k , will be

V i
k =

k

∑
l=1

vi
l , k = 1, . . . ,m.

Notice that if n is the number of voters of a profile p, then
m

∑
i=1

vi
k = n for all

k ∈ {1, . . . ,m}. Therefore,

m

∑
i=1

V i
k =

m

∑
i=1

k

∑
l=1

vi
l =

k

∑
l=1

m

∑
i=1

vi
l =

k

∑
l=1

n = kn.

Once obtained the cumulative standings of each candidate, we assign a score to
each of them by using a monotonic function F of his/her cumulative standings. Since
the number of cumulative standings in the last place is always the number of voters
of the profile p (that is, V i

m = n for all i ∈ {1, . . . ,m}), this function, called cumulative
standings function (CSF), will be defined without considering V i

m as variable4, i.e.,

F : V −→R,

where
V =

{
(V1, . . . ,Vm−1) ∈Nm−1 | 0≤V1 ≤ ·· · ≤Vm−1

}
.

3 Although the cumulative standings of each candidate depend on the profile p, in order to avoid cum-
bersome notation we shall omit p in the notation of these values when there is no possible confusion. When
it will be necessary, we will use the notation V i

k for the profile p, V ′ik for the profile p′ and so on.
4 Nevertheless, for convenience we continue to use the notation V i

m instead of n when appropriate.
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Thus, if Vi = (V i
1,V

i
2, . . . ,V

i
m−1) represents the candidate Ai’s cumulative standings,

the score obtained by candidate Ai is F(Vi) and the candidates can be ordered in the
usual way:

Ai � A j ⇔ F(Vi)> F(V j).

Given a CSF F , the PVS obtained by the procedure described above will be called
the PVS generated by F5. Notice that different CSFs can yield the same PVS. In this
case we will say that the CSFs are equivalent.

We would like to highlight that the monotonicity property imposed on these func-
tions can be considered a reasonable condition: if Vi ≥ V j (that is, if all the cumu-
lative standings of candidate Ai are higher than or equal to those of candidate A j), it
seems natural from a positional perspective that Ai < A j, or equivalently,

Vi ≥ V j ⇒ F(Vi)≥ F(V j).

To finish this section, it is worth pointing out that the use of CSFs allows us to
extend to the field of PVSs some results known in the literature. For example, that
the winning candidates with all scoring rules can be easily characterized by means of
cumulative standings (see Fishburn 1974 and Stein et al 1994). Given that the CSFs
are monotonic, the extension of this result is straightforward.

Theorem 1 Given a profile p, a candidate Ai is a winner with all PVSs generated by
CSFs if and only if Vi ≥ V j for all j 6= i.

3 Examples of PVSs generated by CSFs

In this section we recall some PVSs proposed in the literature and show that these
systems can be obtained through CSFs6. It is worth noting that, in some cases, the
PVSs suggested in the literature only provide a set of winning candidates. However,
the use of CSFs determine a weak order among the candidates so that the candidates
ordered in first place are the winning candidates given by the PVSs.

We can classify the PVSs analyzed in this paper in the following manner:

1. Classical PVSs, such as the scoring rules and the Lexicographic rule.
2. PVSs based on the trade-off between the quality and quantity of support behind

candidates, such as the Condorcet’s practical method, the q-Approval Fallback
Bargaining and the Majoritarian Compromise7.

3. PVSs based on scoring rules with variable scoring vectors, such as the models
proposed by Obata and Ishii (2003) and Contreras et al (2005).

4. PVSs based on means, such as the Geometric rule.

5 Taking into account that the score of each candidate only depends on the number of first, second, . . . ,
mth ranks obtained by him/her, the use of CSFs excludes the PVSs that have the drawback mentioned in
the introduction.

6 It is easy to check that the functions considered in this section are monotonic and, therefore, are CSFs.
7 Notice that, although the majoritarian compromise historically precedes q-approval fallback bargain-

ing, we first show this PVS for the sake of simplicity of the CSF.
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3.1 Scoring rules

The scoring rule associated with s is the social choice rule defined through the scoring
vector s = (s1, . . . ,sm) ∈ Rm, with s1 ≥ s2 ≥ ·· · ≥ sm and s1 > sm, where, for each
profile p, sk points are assigned to the kth most preferred candidate of each voter and
the winning candidates are those who receive the highest total number of points. So,
the score obtained by candidate Ai is ∑

m
k=1 skvi

k, where vi
k is the number of kth place

ranks that candidate Ai occupies.
By using the cumulative standings V i

k , Llamazares and Peña (2014) have shown
that scoring rules can be defined through the CSFs

FS(V1, . . . ,Vm−1) = S1V1 + · · ·+Sm−1Vm−1,

where the scoring vectors S belong to the following set:

S =

{
S ∈Rm−1 | S > 0,

m−1

∑
k=1

Sk = 1

}
.

Concretely, the best-known scoring rules can be represented by means of FS as
follows:

1. Borda rule: A candidate receives no points for being ranked last, one point for
being ranked next to last, up to m− 1 points for being ranked first. In the set
of scoring vectors S , Borda rule is obtained when Sk = 1/(m− 1) for all k ∈
{1, . . . ,m−1}; that is,

FS(V1, . . . ,Vm−1) =
V1 + · · ·+Vm−1

m−1
.

So, the score obtained by each candidate is the arithmetic mean of his/her cumu-
lative standings.

2. k-approval voting: The candidates with the largest number of votes in the k first
positions win8. In the set of scoring vectors S , k-approval voting is obtained
when Sk = 1 and Si = 0 for all i 6= k; that is,

FS(V1, . . . ,Vm−1) =Vk.

It is important to emphasize that k-approval voting systems allow us to character-
ize the winning candidates with all PVSs generated by CSFs. Notice that, given a
profile p, a candidate Ai is a winning candidate with all k-approval voting systems
if and only if Vi ≥V j for all j 6= i. So, from Theorem 1, it is immediate to deduce
the following corollary9.

Corollary 1 Given a profile p, a candidate Ai is a winner with all PVSs generated
by CSFs if and only if he/she is a winning candidate with all k-approval voting
systems.

8 The best known special cases of k-approval voting are plurality (k = 1) and antiplurality (k = m−1).
9 This corollary extends to all PVSs generated by CSFs the result obtained for the scoring rules by Saari

(1992, 1994) (see also Merlin et al 2000).
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3.2 Lexicographic rule

The lexicographic rule can be seen as a way of breaking ties in the plurality rule. So,
in the lexicographic voting rule, the candidate with the highest number of first ranks
wins. When several candidates satisfy this condition, the candidate with the highest
number of second ranks is chosen from among them and so on.

A CSF of this rule can be obtained by similarity with the lexicographic order
of natural numbers: Given two natural numbers with the same number of digits, the
natural number with the highest first digit is greater, if the two numbers have the
same first digit, the number with the highest second digit is greater and so on. This
lexicographic order of natural numbers comes from their representation in base 10,
where digits range from 0 to 9 and each position has a value ten times that of the
position to its right. For this reason, a unit in a position has a value greater than nine
units in all positions to its right. For instance,

1 ·102 +0 ·101 +0 ·100 = 100 > 099 = 0 ·102 +9 ·101 +9 ·100.

Taking into account that similar comments can be done for any base-k numerical
system and given that Vi ranges from 0 to n for all i∈ {1, . . . ,m−1}, the winning can-
didates with the lexicographic rule can be obtained by considering that V1, . . . ,Vm−1
are the digits of a number represented in the base-(n+1) numerical system and cal-
culating its value, that is, the following CSF:

FL(V1, . . . ,Vm−1) =V1(n+1)m−2 + · · ·+Vm−2(n+1)+Vm−1.

3.3 Condorcet’s practical method

Under this rule, the candidate with an absolute majority of first ranks wins. If there is
no such candidate, the winning candidates are those with the biggest sum of first and
second ranks (see, for instance, Nurmi 1999, p. 21).

It is easy to check that the winning candidates can be obtained with the following
CSF:

FC(V1, . . . ,Vm−1) = H
(
V1− (bn/2c+1)

)
+

V2

n
,

where bxc is the integer part of x, i.e., the largest integer smaller than or equal to x, and
H is the Heaviside step function with H(0) = 1 (or, equivalently, the characteristic
function of the interval [0,∞)); that is,

H(x) =

{
1, if x≥ 0,

0, if x < 0.

The winning candidates with this method can also be obtained with the following
equivalent CSF:

F ′C(V1, . . . ,Vm−1) =

⌊
V1

bn/2c+1

⌋
+

V2

n
.
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3.4 q-Approval Fallback Bargaining

Brams and Kilgour (2001) proposed a procedure where the winning candidates are
selected in the following manner: Given q∈{1, . . . ,n}, if a candidate is ranked first by
at least q voters, that candidate wins; otherwise, if this threshold is achieved by some
candidate when the first and second ranks are considered, that candidate is chosen; if
not, then lower rankings must be added until some candidate achieves the threshold
established. Notice that when q = n, the procedure is denominated by the authors as
Fallback Bargaining and it is also know as the Maximin rule or the Kant-Rawls social
compromise (see Hurwicz and Sertel 1999) and it has been characterized by Congar
and Merlin (2012).

The winning candidates provided by this method can be obtained by using the
following CSF:

Fq(V1, . . . ,Vm−1) = H(V1−q)+ · · ·+H(Vm−1−q),

where H is the Heaviside step function with H(0) = 1. Note that, since V1 ≤ ·· · ≤
Vm−1, when a summand of this function is equal to 1, the following summands will
also be 1; that is, if H(Vk−q) = 1, then H(Vl−q) = 1 for all l ∈ {k+1, . . . ,m−1}.
Therefore, Fq returns the value m−k, where k is the smaller integer for which Vk ≥ q.

It is worth noting that when n is odd and q = (n+1)/2, the previous CSF deter-
mines a weak order among the candidates which coincides with that obtained by a
procedure proposed by Bassett and Persky (1999): the Median Voting Rule (see also
Gehrlein and Lepelley 2003).

On the other hand, the function H(Vi−q) takes the same values as bVi/qc when
q > n/2. Therefore, in this case, we can also use the following CSF to obtain the set
of winning candidates chosen by q-approval fallback bargaining:

F ′q(V1, . . . ,Vm−1) =

⌊
V1

q

⌋
+ · · ·+

⌊
Vm−1

q

⌋
.

3.5 The Majoritarian Compromise

Sertel and Yilmaz (1999) suggested a model similar to the previous one with q =
b(n+ 1)/2c, but when the previous procedure is applied to the k first positions and
various winning candidates are obtained, Sertel and Yilmaz proposed to select those
with the biggest sum of first, second, . . . , kth ranks.

The winning candidates in this model can be obtained with the following CSF:

FM(V1, . . . ,Vm−1) =
V1

n
H(V1−q)

+

(
V2

n
+

(
1− V2

n

)
H(V1−q)

)
H(V2−q)+ · · ·

+

(
Vm−1

n
+

(
1− Vm−1

n

)
H(Vm−2−q)

)
H(Vm−1−q),
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where H is the Heaviside step function with H(0) = 1. So, when V1 ≥ q for various
candidates, the first summand is V1/n and the remaining m−2 summands are equal
to 1 for these candidates. Therefore the candidates with the highest number of first
positions win. Analogously, when V1 < q for all candidates but V2 ≥ q for various
candidates, the first summand is 0, the second summand is V2/n and the remaining
m− 3 summands are equal to 1 for these candidates. Therefore the candidates with
the highest number of first and second positions win. And so on.

3.6 Obata and Ishii’s method

One of the most important issues in the context of scoring rules is the choice of the
scoring vector, since the winning candidates can vary according to the scores used.
To avoid this problem, Obata and Ishii (2003), following the idea of Cook and Kress
(1990), proposed to assess each candidate with the most favorable scoring vector for
him/her using a DEA/AR model. In a particular case of this model (when the L1-
norm is used and the discrimination intensity functions are zero), the score achieved
by each candidate is

Ẑi = max
m

∑
k=1

skvi
k

s.t. s ∈ Ŝ

where

Ŝ =

{
s ∈Rm | s > 0,

m

∑
k=1

sk = 1, sk ≥ sk+1 (k = 1, . . . ,m−1),
m

∑
k=1

skv j
k ≤

m

∑
k=1

skvi
k (for all j 6= i)

}
.

The winning candidates10 with this model have been characterized by Foroughi
et al (2005) and Llamazares and Peña (2009): A candidate Ai is a winner if and only
if

max
k=1,...,m

V i
k

k
≥ max

k=1,...,m

V j
k
k

for all j ∈ {1, . . . ,m}. Moreover, in this case,

Ẑi = max
k=1,...,m

V i
k

k
.

Therefore, the winning candidates can be obtained using the following CSF:

FOI(V1, . . . ,Vm−1) = max
{

V1,
V2

2
, . . . ,

Vm−1

m−1
,
Vm

m

}
.

Notice that, since Vk/k = (v1 + · · ·+ vk)/k is the value returned by the scoring
rule with the normalized scoring vector s = (1/k, . . . ,1/k,0, . . . ,0), the function FOI
is equivalent to evaluating the candidates by using the standard normalized k-approval
voting and choosing the maximum value.

10 It is worth noting that the same set of winning candidates can be also obtained through a model
proposed by Llamazares and Peña (2013).
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3.7 Contreras, Hinojosa and Mármol’s method

As in the previous model, Contreras et al (2005) suggested to assess each candidate
with the most favorable scoring vector for him/her by considering several constraints
on the scoring vectors. One of the models proposed by these authors is

Z̃i = max
m

∑
k=1

skvi
k

s.t. s ∈ S̃

where

S̃ =

{
s ∈Rm | s > 0,

m

∑
k=1

sk = 1, sm−1− sm ≥ sm,

sk− sk+1 ≥ sk+1− sk+2 (k = 1, . . . ,m−2)

}
.

These authors showed that, with this model, the candidate Ai’s score is

Z̃i = max
k=1,...,m

{
k

∑
l=1

k− l +1
k(k+1)

2

vi
l

}
.

Therefore, this score also could be obtained using the following CSF:

FCHM(V1, . . . ,Vm−1) = max

{
V1,

V1 +V2

3
, . . . ,

2
m(m+1)

m

∑
k=1

Vk

}
.

It is worth noting that
k

∑
l=1

k− l +1
k(k+1)

2

vl

is the value returned by the scoring rule associated with the normalized scoring vector

s =

(
k

k(k+1)
2

,
k−1
k(k+1)

2

, . . . ,
1

k(k+1)
2

,0, . . . ,0

)
.

So, as Contreras et al (2005) have pointed out, the function FCHM is equivalent to
evaluating the candidates by using the normalized truncated Borda rules (on this, see
Fishburn 1974) and choosing the maximum value.

3.8 The Geometric rule

In addition to the PVSs proposed in the literature, others can be established. We have
seen above that scoring rules are obtained when weighted means are used as CSFs.
For this reason, it would be interesting to know which PVSs result when we use
another class of means. For instance, we are going to consider the following CSF,
which is equivalent to the geometric mean:
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FG(V1, . . . ,Vm−1) =V1 ·V2 · · · · ·Vm−1.

It is worth noting that, when this PVS is used, candidates need at least one first
position to be winners. This minimum requirement (from a positional point of view)
is not fulfilled by some well-known voting systems such as the Borda rule and the
Condorcet consistent methods.

4 Properties of PVSs generated by CSFs

We next use the cumulative standing functions to analyze which social choice prop-
erties are met by each of the procedures described in the previous section11. This
analysis allows us to compare the different PVSs used in practice from a theoretical
point of view.

Concretely, the six properties that we are going to analyze are monotonicity,
Pareto-optimality, immunity to the absolute winner paradox, Condorcet-consistency,
immunity to the absolute loser paradox and immunity to the Condorcet loser paradox.
Monotonicity can be considered as a basic property that must always be satisfied (see,
for instance, Fishburn 1982 and Moulin 1988, p. 233). On the other hand, Felsenthal
(2012) reviews the main paradoxes afflicting voting procedures and points out the
violation of monotonicity or of the last four properties as specially intolerable para-
doxes12.

It is worth noting that, in some cases, the fulfillment of a property may depend on
the number of candidates considered, so our analysis is undertaken for the different
values of m (in this regard see the analysis of the Pareto optimality and the absolute
loser paradox for the Condorcet’s practical method).

With regard to the PVSs, the q-Approval Fallback Bargaining deserves a com-
ment. As in the case of qualified majorities, it does not seem plausible to consider
the value of q independently of the number of voters, but rather as a percentage of
that number. The most common percentages used are 50% and 100%. When 50% is
considered, the method is similar to the Majoritarian Compromise, so we assume a
percentage of 100%, that is q = n (Fallback Bargaining)13. Nevertheless, some of the
results presented in this paper apply for any q in the range 1≤ q≤ n.

4.1 Monotonicity

Although the monotonicity of some of the PVSs presented in the previous section is
already known, the use of the cumulative standing functions allows us to extend this
result to all PVSs generated by these functions.

11 Excepting the scoring rules because the results relative to these voting systems are already known (see
Llamazares and Peña 2014).

12 It is worth noting that Condorcet-consistency is a controversial property: Although some authors such
as Felsenthal (2012) hold that a Condorcet winner, if one exists, ought always to be elected, others, such
as Fishburn (1974), question the importance of this property.

13 In this case the cumulative standing function will be denoted by Fn instead of Fq.
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Definition 1 A PVS is monotonic if, for every profile p, when some voters raise a
winning candidate in their rankings without changing the orders of the remaining
candidates, this candidate continues to be a winner.

Theorem 2 All the PVSs generated by CSFs are monotonic.

4.2 Pareto-optimality

Definition 2 Let p be a profile.

1. A candidate Ai dominates A j if all the voters strictly prefer Ai to A j.
2. A candidate Ai is Pareto-optimal if there does not exist another candidate that

dominates Ai.

Definition 3 A PVS is Pareto-optimal if, for every profile p, all the winning candi-
dates are Pareto-optimal.

This definition of Pareto-optimality has been used by Moulin (1988, p. 233) and
Nurmi (1999, p. 88), among others. Nevertheless, notice that some authors such as
Fishburn (1974) and Felsenthal (2012) analyze the susceptibility of some voting sys-
tems to the following paradox (that they call the dominated-winner paradox or Pareto
paradox): A candidate which is not Pareto-optimal may be a winner while a candi-
date that dominates him/her may not be. Since the CSFs are monotonic, all PVSs
generated by CSFs are immune to this paradox: Given a profile p, if candidate Ai
dominates candidate A j, then Vi ≥V j. Therefore, F(Vi)≥ F(V j) and, consequently,
if A j is a winner, then so is Ai.

The Pareto-optimality of q-Approval Fallback Bargaining and the Majoritarian
Compromise has been proven by Brams and Kilgour (2001) and Sertel and Yilmaz
(1999), respectively. In the following theorem we establish the Pareto-optimality of
other PVSs introduced in Section 3.

Theorem 3 The Lexicographic rule, the Obata and Ishii’s method, the Contreras,
Hinojosa and Mármol’s method and the Geometric rule are Pareto-optimal. More-
over, when m = 3, the Condorcet’s practical method is Pareto-optimal.

When m≥ 4, the Condorcet’s practical method is not Pareto-optimal. To see this
fact, it is sufficient to consider 10 voters and a profile p where

5 voters: A1 A2 A3 A4 · · ·Am
5 voters: A3 A4 A1 A2 · · ·Am.

In Table 1 we show the cumulative standings of the candidates. It is easy to check
that A1, A2, A3 and A4 are the winners. However, A2 and A4 are not Pareto optimal
because they are dominated by A1 and A3, respectively.

4.3 Absolute winner paradox

Definition 4 Let p be a profile. A candidate Ai is the absolute winner if he/she is
ranked first by an absolute majority of voters.
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Table 1 Cumulative standings of profile p (Pareto-optimality)

Candidate V i
1 V i

2 V i
3 V i

4 · · · V i
m−1

A1 5 5 10 10 · · · 10
A2 0 5 5 10 · · · 10
A3 5 5 10 10 · · · 10
A4 0 5 5 10 · · · 10
· · · · · · · · · · · · · · · · · · · · ·
Am 0 0 0 0 · · · 0

Table 2 Cumulative standings of profile p (Absolute winner paradox)

Candidate V i
1 V i

2 V i
3 · · · V i

m−1

A1 3 3 5 · · · 5
A2 2 5 5 · · · 5
A3 0 2 5 · · · 5
· · · · · · · · · · · · · · · · · ·
Am 0 0 0 · · · 0

Definition 5 A PVS is immune to the absolute winner paradox if, for every profile
p, the absolute winner, whenever he/she exists, is the only winning candidate.

It is obvious that the Lexicographic rule, the Condorcet’s practical method and
the Majoritarian Compromise are immune to this paradox. In the sequel we establish
the immunity to the absolute winner paradox of the Obata and Ishii’s method and the
Contreras, Hinojosa and Mármol’s method.

Theorem 4 The Obata and Ishii’s method and the Contreras, Hinojosa and Már-
mol’s method are immune to the absolute winner paradox.

The following example shows that Fallback Bargaining and the Geometric rule
are vulnerable to the absolute winner paradox. Consider 5 voters and a profile p where

3 voters: A1 A2 A3 · · ·Am
2 voters: A2 A3 A1 · · ·Am.

In this situation the candidate A1 is the absolute winner. Table 2 shows the cu-
mulative standings of the candidates14. It is easy to check that Fn(V2) = m− 2 and
Fn(Vi)<m−2 for all i 6= 2. On the other hand, FG(V1)= 9 ·5m−3, FG(V2)= 10 ·5m−3

and FG(Vi) = 0 for all i ∈ {3, . . . ,m}. So, the winner in both cases is A2.

4.4 Condorcet consistency

Definition 6 Let p be a profile. A candidate Ai is the Condorcet winner if he/she
beats all others in pairwise comparison.

Definition 7 A PVS is Condorcet consistent if, for every profile p, the Condorcet
winner, whenever he/she exists, is the only winning candidate.

14 Notice that, when m = 3, the third column of Table 2 is V i
2 and not V i

m−1.
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Table 3 Cumulative standings of profile p (Condorcet consistency)

Candidate V i
1 V i

2 V i
3 V i

4 · · · V i
m−1

A1 4 8 10 10 · · · 10
A2 5 9 11 11 · · · 11
A3 2 5 11 11 · · · 11
A4 0 0 1 11 · · · 11
· · · · · · · · · · · · · · · · · · · · ·
Am 0 0 0 0 · · · 1

Taking into account that an absolute winner is always a Condorcet winner, a pro-
cedure which is vulnerable to the absolute winner paradox is not Condorcet consis-
tent. So, Fallback Bargaining and the Geometric rule are not Condorcet consistent.

On the other hand, the use of cumulative standings functions simplifies the analy-
sis of this property for many PVSs. To see this, we introduce the following definition.

Definition 8 A cumulative standings function F is weakly monotonic when, for every
profile p, Vi� V j implies F(Vi)> F(V j).

It is easy to check that all the scoring rules, the Lexicographic rule, the Con-
dorcet’s practical method, the Contreras, Hinojosa and Mármol’s method and the
Geometric rule are generated by weakly monotonic CSFs.

PVSs generated by weakly monotonic CSFs are not Condorcet consistent. To see
this fact, it is sufficient to consider 11 voters and a profile p where

4 voters: A1 A2 A3 A4 · · ·Am
2 voters: A2 A3 A1 A4 · · ·Am
2 voters: A2 A1 A3 A4 · · ·Am
2 voters: A3 A1 A2 A4 · · ·Am
1 voter: A2 A3 A4 A5 · · ·A1.

In Table 3 we show the cumulative standings of the candidates15. As we can see,
V2� V1. Therefore, if the PVS is generated by a weakly monotonic function, then
A1 is not a winning candidate although being the Condorcet winner.

The above profile p can also be used to show that Fallback Bargaining (when m≥
4), the Majoritarian Compromise and the Obata and Ishii’s method are not Condorcet
consistent. Since

Fn(V1) = 0, FM(V1) =
8

11
+m−3, FOI(V1) = 4,

Fn(V2) = m−3, FM(V2) =
9

11
+m−3, FOI(V2) = 5,

A1 is not a winning candidate in the PVSs mentioned previously. For the case m = 3,
the following profile allows us to show that Fallback Bargaining is not Concorcet
consistent16:

15 It is worth noting that, when m = 3, the third column of Table 3 is V i
2 and not V i

m−1.
16 It is worth noting that Brams and Kilgour (2001) and Sertel and Yilmaz (1999) use examples with four

and five candidates, respectively, to show that their methods are not Condorcet consistent. Our examples
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3 voters: A1 A2 A3
2 voters: A2 A3 A1.

A1 is the Condorcet winner although he/she is not a winning candidate.

4.5 Absolute loser paradox

Definition 9 Let p be a profile. A candidate Ai is the absolute loser if he/she is ranked
last by an absolute majority of voters.

Definition 10 A PVS is immune to the absolute loser paradox if, for every profile p,
the absolute loser, whenever he/she exists, is not a winning candidate.

The immunity of the Majoritarian Compromise to the absolute loser paradox has
been noted by Sertel and Yilmaz (1999). This property is called by these authors
strong no imposition power.

In the following theorem, we establish the vulnerability to this paradox of the
remaining PVSs analyzed in this paper.

Theorem 5 The Lexicographic rule, Fallback Bargaining, the Obata and Ishii’s
method, the Contreras, Hinojosa and Mármol’s method and the Geometric rule are
vulnerable to the absolute loser paradox. Moreover, the Condorcet’s practical method
is vulnerable to this paradox when m > 4 and immune when m≤ 4.

4.6 Condorcet loser paradox

Definition 11 Let p be a profile. A candidate Ai is the Condorcet loser if an absolute
majority of voters prefer each of the remaining candidates to Ai.

Definition 12 A PVS is immune to the Condorcet loser paradox if, for every profile
p, the absolute loser, whenever he/she exists, is not a winning candidate.

Taking into account that an absolute loser is always a Condorcet loser, a procedure
which is vulnerable to the absolute loser paradox is also vulnerable to the Condorcet
loser paradox. So, the Lexicographic rule, the Condorcet’s practical method (with
m > 4), Fallback Bargaining, the Obata and Ishii’s method, the Contreras, Hinojosa
and Mármol’s method and the Geometric rule suffer from the last paradox. On the
other hand, Sertel and Yilmaz (1999) have shown that the Majoritarian Compromise
is vulnerable to the Condorcet loser paradox when m = 5.

In the sequel, we show that the Condorcet’s practical method is vulnerable to the
Condorcet loser paradox when m ≤ 4 and that the Majoritarian Compromise suffers
from this paradox independently of the number of the candidates.

First, consider 15 voters, 4 candidates and a profile p where

show this result independently of the number of the candidates. In this respect, for m≥ 3, the no-Condorcet
consistency of the Condorcet’s practical method and the Majoritarian Compromise has been noted by
Merlin et al (2006) using the geometry of voting.



Positional voting systems generated by cumulative standings functions 15

Table 4 Cumulative standings of profile p (Condorcet loser paradox, m = 4)

Candidate V i
1 V i

2 V i
3

A1 0 9 11
A2 6 8 9
A3 6 8 10
A4 3 5 15

Table 5 Cumulative standings of profile p′ (Condorcet loser paradox, m = 3)

Candidate V ′i1 V ′i2

A1 3 11
A2 6 9
A3 6 10

4 voters: A2 A1 A4 A3
2 voters: A2 A3 A4 A1
2 voters: A3 A1 A4 A2
2 voters: A3 A2 A4 A1
2 voters: A3 A4 A1 A2
2 voters: A4 A1 A3 A2
1 voter: A4 A1 A2 A3.

It is easy to check that A1 is the Condorcet loser. In Table 4 we show the cu-
mulative standings of the candidates. From this table we obtain that FC(V1) = 9/15,
FC(V2) = FC(V3) = 8/15 and FC(V4) = 5/15. On the other hand, FM(V1) = 9/15+
1, FM(V2) = FM(V3) = 8/15+ 1 and FM(V4) = 15/15. So, the winner with both
methods is A1.

Now, let us remove candidate A4 from the previous profile, maintaining the or-
der of the three remaining candidates. In this way, we obtain a new profile p′ with
only three candidates where A1 is still the Condorcet loser. Table 5 shows the new
cumulative standings of the candidates. In this case, FC(V′1) = FM(V′1) = 11/15,
FC(V′2) = FM(V′2) = 9/15 and FC(V′3) = FM(V′3) = 10/15. Again, the Condorcet
loser is the winner with both methods.

Finally, to show that the Majoritarian Compromise suffers from this paradox for
all m ≥ 5 we use the following example. On one hand, we consider the forward
cyclic list of orders17 generated by A2 A3 · · ·Am and place candidate A1 in the second
position. On the other hand, we consider the forward cyclic list of orders generated
by A2 A3 · · ·Am−1 and place candidates Am and A1 in the penultimate and last position,
respectively. In this way, we have the following profile p of 2m−3 voters:

17 According to Fishburn (1974), the forward cyclic list of orders generated by A1 A2 · · ·Am is the m-tuple
of orders (A1 A2 · · ·Am−1 Am, A2 A3 · · ·Am A1, A3 A4 · · ·A1 A2, . . . , Am A1 · · ·Am−2 Am−1).
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Table 6 Cumulative standings of profile p (Condorcet loser paradox, m≥ 5)

Candidate V i
1 V i

2 · · · V i
m−1

A1 0 m−1 · · · m−1
A2 2 3 · · · 2m−4
A3 2 3 · · · 2m−4
· · · · · · · · · · · · · · ·

Am−1 2 3 · · · 2m−4
Am 1 1 · · · 2m−4

1 voter: A2 A1 A3 · · ·Am−1 Am
1 voter: A3 A1 A4 · · ·Am A2
1 voter: A4 A1 A5 · · ·A2 A3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 voter: Am A1 A2 · · ·Am−2 Am−1

1 voter: A2 A3 · · ·Am−1 Am A1
1 voter: A3 A4 · · ·A2 Am A1
1 voter: A4 A5 · · ·A3 Am A1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1 voter: Am−1 A2 · · ·Am−2 Am A1.

It is easy to check that A1 is the Condorcet loser. In Table 6 we show the cumula-
tive standings of the candidates according to the profile p.

For m ≥ 5 none of the candidates have a majority of first ranks. In this situation
we have

FM(V1) =
m−1
2m−3

+m−3,

FM(Vi)≤ 3
2m−3

+m−3 (for all i ∈ {2, . . . ,m}),

that is, FM(V1)> FM(Vi) for all i ∈ {2, . . . ,m}. Therefore, A1 is the winner.

5 Conclusion

In this paper we have established a general framework based on cumulative standings
functions for the analysis of some positional voting systems. The proposed model
has allowed us to extend some results appeared in the literature. For example, we
have extended to all PVSs generated by CSFs the characterization of the winning
candidates under every scoring rule given by Fishburn (1974). Also, we have shown
that a candidate is a winner with all PVSs generated by CSFs if and only if he/she
is the winning candidate with all k-approval systems, k = 1, . . . ,m−1. Thus, we ex-
tend to all PVSs generated by CSFs the result obtained by Saari (1992, 1994), (see
also Merlin et al 2000), for scoring rules. On the other hand, the proposed model has
facilitated the analysis of these voting systems through various properties that can
be established for cumulative standings functions. For example, given that cumula-
tive standing functions are monotonic, it is straightforward to check that all PVSs
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Table 7 Social choice properties of some PVSs

M PO IAWP CC IALP ICLP

Lexicographic rule 3 3 3

Condorcet’s practical method 3 3(m = 3) 3 3(m≤ 4)

Fallback Bargaining 3 3

Majoritarian Compromise 3 3 3 3

Obata and Ishii’s method 3 3 3

Contreras, Hinojosa and Mármol’s method 3 3 3

Geometric rule 3 3

M: Monotonicity, PO: Pareto-optimality, IAWP: Immunity to the absolute winner paradox, CC: Condorcet consistency,
IALP: Immunity to the absolute loser paradox, ICLP: Immunity to the Condorcet loser paradox.

generated by these function are monotonic. Also, if the CSF that generate a PVS is
weakly monotonic, it is easy to prove that this PVS is not Condorcet consistent. Fur-
thermore, the use of cumulative standings together with the representation of PVSs
by means of CSFs facilitates the analysis of other properties of the PVSs such as
Pareto-optimality, the immunity to the absolute winner paradox, the immunity to the
absolute loser paradox and the immunity to the Condorcet loser paradox. Given that
in some cases the satisfaction of a property may depend on the number of candidates
considered, our analysis of the axioms listed above has been undertaken for different
values of this variable. Table 7 summarizes the results obtained in this respect.
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A Appendix

Proof of Theorem 2. Let F be a CSF, let p be a profile and let Ai be a winning can-
didate for this profile. Suppose that some voters raise Ai in their rankings without
changing the orders of the remaining candidates. Let p′ be this new profile. It is
straightforward to check that V′i ≥ Vi and V′ j ≤ V j for all j 6= i. Since Ai is a win-
ning candidate and F is monotonic we have

F(V′i)≥ F(Vi)≥ F(V j)≥ F(V′ j)

for all j 6= i. Therefore, Ai continues to be a winning candidate for the new profile
p′.

Before proving Theorem 3, we give the following lemma.

Lemma 1 If the candidate Ai is not Pareto-optimal, then V i
1 = 0 and there exists

another candidate A j with V i
k ≤V j

k−1 for all k ∈ {2, . . . ,m}.
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Proof. If Ai is not Pareto-optimal, there exists another candidate A j that is preferred
to Ai by all voters, so V i

1 = 0. On the other hand, when a voter places candidate Ai in
the kth position, that voter will have ranked A j higher. Therefore, V i

k ≤ V j
k−1 for all

k ∈ {2, . . . ,m}.

Proof of Theorem 3. In all cases we are going to prove that, given a profile p, if a
candidate Ai is not Pareto-optimal, then Ai cannot be a winning candidate.

1. Lexicographic rule: If Ai is not Pareto-optimal, then, by Lemma 1, V i
1 = 0 and,

consequently, Ai is not a winning candidate.
2. Condorcet’s practical method: Consider m = 3. If Ai is not Pareto-optimal, then

he/she is dominated by a candidate A j. We distinguish two cases:
(a) If V j

1 > bn/2c, then A j is the only winner.
(b) If V j

1 ≤ bn/2c, then, by Lemma 1, V i
1 = 0, V j

2 ≥V i
3 = n and V i

2 ≤V j
1 < n. So,

FC(V j) = 1 and FC(Vi)< 1. Therefore, Ai cannot be a winning candidate.
3. Obata and Ishii’s method: If Ai is not Pareto-optimal, then, by Lemma 1, V i

1 = 0
and there exists another candidate A j with V i

k ≤ V j
k−1 for all k ∈ {2, . . . ,m}. Let

l ∈ {2, . . . ,m} such that

FOI(Vi) = max

{
V i

1,
V i

2
2
, . . . ,

V i
m−1

m−1
,
V i

m

m

}
=

V i
l
l
.

Since V i
l > 0 and V i

l ≤V j
l−1, we have

FOI(Vi) =
V i

l
l
<

V j
l−1

l−1
≤ FOI(V j).

Therefore, Ai is not a winning candidate.
4. Contreras, Hinojosa and Mármol’s method: If Ai is not Pareto-optimal, then, by

Lemma 1, V i
1 = 0 and there exists another candidate A j with V i

k ≤ V j
k−1 for all

k ∈ {2, . . . ,m}. Let l ∈ {2, . . . ,m} such that

FCHM(Vi) = max

{
V i

1,
V i

1 +V i
2

3
, . . . ,

2
m(m+1)

m

∑
k=1

V i
k

}
=

2
l(l +1)

l

∑
k=1

V i
k .

Since
l

∑
k=1

V i
k > 0 and

l

∑
k=1

V i
k ≤

l−1

∑
k=1

V j
k , we have

FCHM(Vi) =
2

l(l +1)

l

∑
k=1

V i
k <

2
(l−1)l

l−1

∑
k=1

V j
k ≤ FCHM(V j).

Therefore, Ai is not a winning candidate.
5. Geometric rule: If Ai is not Pareto-optimal, then, by Lemma 1, V i

1 = 0 and, con-
sequently, FG(Vi) = 0. So, Ai is not a winning candidate.

Proof of Theorem 4.
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1. Obata and Ishii’s method: Let Ai be the absolute winner of a profile p. In this case,
V i

1 ≥ bn/2c+1; so, FOI(Vi)≥ bn/2c+1. Now, consider j 6= i. Then V j
k /k ≤ n/2

for all k ∈ {1, . . . ,m}. Therefore, FOI(V j) ≤ n/2 < bn/2c+ 1 ≤ FOI(Vi), for all
j 6= i. Consequently, Ai is the only winner.

2. Contreras, Hinojosa and Mármol’s method: Let Ai be the absolute winner of a
profile p. In this case, V i

1 ≥ bn/2c+1; so, FCHM(Vi)≥ bn/2c+1. Now, consider
j 6= i. Note that

FCHM(V j) = max
l=1,...,m

{
2

l(l +1)

l

∑
k=1

V j
k

}

and that V j
1 ≤ n−

(
bn/2c+1

)
. Then, for all l ∈ {1, . . . ,m}, we have

2
l(l +1)

l

∑
k=1

V j
k ≤

2
l(l +1)

(
n−
(
bn/2c+1

)
+(l−1)n

)
=

2
l(l +1)

(
ln−

(
bn/2c+1

))
= 2

(
n

l +1
− bn/2c+1

l(l +1)

)
.

We are going to prove that the maximum value of the last expression is achieved
when l = 2. We distinguish two cases:
(a) If l = 1, then

n
2
− bn/2c+1

2
≤ n

3
− bn/2c+1

6
⇔ n

6
≤ bn/2c+1

3
⇔ n≤ 2

(
bn/2c+1

)
,

which is true.
(b) If l ∈ {3, . . . ,m}, then

n
l +1

− bn/2c+1
l(l +1)

≤ n
3
− bn/2c+1

6

⇔
(
bn/2c+1

) l(l +1)−6
6l(l +1)

≤ n
l−2

3(l +1)

⇔
(
bn/2c+1

) (l +3)(l−2)
l

≤ 2n(l−2)

⇔
(
bn/2c+1

)
(l +3)≤ 2ln,

which is true.
Therefore,

FCHM(V j)≤ 2
(

n
3
− bn/2c+1

6

)
< 2

(
2
(
bn/2c+1

)
3

− bn/2c+1
6

)
= bn/2c+1≤ FCHM(Vi),

for all j 6= i. Consequently, Ai is the only winner.
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Table 8 Cumulative standings of profile p (Absolute loser paradox)

Candidate V i
1 V i

2 V i
3 · · · V i

m−2 V i
m−1

A1 4m−5 4m−5 4m−5 · · · 4m−5 4m−5
A2 4 11 19 · · · 4(2m−5)−1 4(2m−3)−1
A3 4 12 19 · · · 4(2m−5)−1 4(2m−3)−1
· · · · · · · · · · · · · · · · · · · · ·

Am−1 4 12 20 · · · 4(2m−5) 4(2m−3)−1
Am 4 12 20 · · · 4(2m−5) 4(2m−3)

Proof of Theorem 5. First, we are going to prove that the Lexicographic rule, the
Condorcet’s practical method (with m > 4), Fallback Bargaining, the Obata and
Ishii’s method, the Contreras, Hinojosa and Mármol’s method and the Geometric
rule are vulnerable to the absolute loser paradox. Consider twice the forward cyclic
list of orders generated by A2 A3 · · ·Am. In the first forward cyclic list we place can-
didate A1 in the first position and in the second forward cyclic list we place A1 in
the last position. Now we consider a profile p of 8m− 9 voters where each order is
considered 4 times but the first one, which is considered 3 times:

3 voters: A1 A2 A3 · · ·Am−1 Am
4 voters: A1 A3 A4 · · ·Am A2
4 voters: A1 A4 A5 · · ·A2 A3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 voters: A1 Am A2 · · ·Am−2 Am−1

4 voters: A2 A3 · · ·Am−1 Am A1
4 voters: A3 A4 · · ·Am A2 A1
4 voters: A4 A5 · · ·A2 A3 A1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
4 voters: Am A2 · · ·Am−2 Am−1 A1.

Notice that A1 is the absolute loser in the profile p. In Table 8 we show the cu-
mulative standings of the candidates according to this profile. It is worth noting that
V m

k = 4(2k−1) for all k ∈ {1, . . . ,m−1}.

We are going to show that A1 is a winning candidate for the PVSs listed in the
statement of Theorem 5 and, consequently, these PVSs are vulnerable to the absolute
loser paradox. Given that Vm ≥ Vi for all i ∈ {2, . . . ,m−1}, for any CSF F we have
F(Vm) ≥ F(Vi) (and, therefore, Am < Ai) for all i ∈ {2, . . . ,m− 1}. Let us see that
A1 < Am for the PVSs considered:

1. Lexicographic rule: Since 4m−5 > 4 for all m≥ 3, we have that A1 � Am.
2. Condorcet’s practical method: Since neither A1 nor Am have a majority of first

ranks and 4m−5 > 12 for all m≥ 5, we have that A1 � Am.
3. Fallback Bargaining: Since V i

m−1 < 8m− 9 = n when i ∈ {1,m}, we have that
Fn(V1) = Fn(Vm) = 0 and, consequently, A1 < Am.
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4. Obata and Ishii’s method: Since V m
k = 4(2k− 1) for all k ∈ {1, . . . ,m− 1}, the

scores of candidates A1 and Am are

FOI(V1) = max
{

4m−5,
4m−5

2
, . . . ,

4m−5
m−1

,
8m−9

m

}
,

FOI(Vm) = max
{

4,6, . . . ,
4(2m−3)

m−1
,

8m−9
m

}
.

It is straightforward to check the following inequalities:

4m−5 >
8m−9

m
(for all m≥ 3),

4(2m−3)
m−1

>
8m−9

m
(for all m≥ 3),

and

V m
k+1

k+1
=

4(2(k+1)−1)
k+1

>
4(2k−1)

k
=

V m
k
k

(for all k ∈ {1, . . . ,m−2}).

Therefore, we get

FOI(V1) = 4m−5, FOI(Vm) =
4(2m−3)

m−1
.

Given that

4m−5 >
4(2m−3)

m−1
(for all m≥ 3),

we have A1 � Am.
5. Contreras, Hinojosa and Mármol’s method: The score obtained by candidates A1

is

FCHM(V1) = max

{
4m−5,

2
3
(4m−5), . . . ,

2
m
(4m−5),

2
m(m+1)

(
(m−1)(4m−5)+(8m−9)

)}
.

It is straightforward to check that the inequality

4m−5 >
2

m(m+1)
(
(m−1)(4m−5)+(8m−9)

)
is satisfied for all m≥ 3. Therefore, FCHM(V1) = 4m−5.
To calculate the score of candidate Am we take into account that

k

∑
l=1

V m
l = 4

k

∑
l=1

(2l−1) = 4k2,
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for all k ∈ {1, . . . ,m−1}. Therefore

2
k(k+1)

k

∑
l=1

V m
l =

8k
k+1

(for all k ∈ {1, . . . ,m−1}),

2
m(m+1)

m

∑
l=1

V m
l =

2
m(m+1)

(
4(m−1)2 +(8m−9)

)
.

It is easy to check the following inequalities:

8k
k+1

<
8(k+1)

k+2
(for all k ∈ {1, . . . ,m−2}),

2
m(m+1)

(
4(m−1)2 +(8m−9)

)
<

8(m−1)
m

.

Therefore

FCHM(Vm) =
8(m−1)

m
.

Given that

4m−5 >
8(m−1)

m
(for all m≥ 3),

we have A1 � Am.
6. Geometric rule: The scores of candidates A1 and Am are

FG(V1) = (4m−5)m−1,

FG(Vm) = 4m−1
m−1

∏
k=1

(2k−1) =
4m−1(2m−2)!
2m−1(m−1)!

= 2m−1 (2m−2)!
(m−1)!

.

We are going to prove that, for all m≥ 3,

2m−1 (2m−2)!
(m−1)!

< (4m−5)m−1.

The proof is by induction on m. If m = 3, then 48 < 49. Suppose now the result
is true for m = k, and let us see that the claim holds for m = k+1. By hypothesis
of induction we have

2k (2k)!
k!

= 2
(2k−1)2k

k
·2k−1 (2k−2)!

(k−1)!
< 4(2k−1)(4k−5)k−1.

Since

(4k−1)k = (4k−1)
(
(4k−5)+4

)k−1

> (4k−2)
(
(4k−5)k−1 +(k−1)4(4k−5)k−2

)
> (4k−2)

(
(4k−5)k−1 +(4k−5)k−1

)
= 4(2k−1)(4k−5)k−1,
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we get

2k (2k)!
k!

< (4k−1)k.

Therefore A1 � Am.

Next we are going to prove that the Condorcet’s practical method is immune to
the absolute loser paradox when m ≤ 4. Let Ai be the absolute loser of a profile p.
Then V i

1 < bn/2c+1. We are going to prove that there exists j 6= i such that V j
2 ≥V i

2
and, consequently, Ai cannot be a winning candidate.

Given that V i
2 ≤ n− (bn/2c+ 1) = b(n− 1)/2c and

m

∑
j=1

V j
2 = 2n, then we have

∑
j 6=i

V j
2 ≥ 2n−b(n−1)/2c. Therefore, there exists j 6= i such that

V j
2 ≥

2n−b(n−1)/2c
m−1

.

Since

2n−b(n−1)/2c
m−1

> b(n−1)/2c ⇔ 2n > mb(n−1)/2c ⇔ 2
m

n > b(n−1)/2c,

which is true when m≤ 4, we get

V j
2 ≥

2n−b(n−1)/2c
m−1

> b(n−1)/2c ≥V i
2.
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