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Abstract

The TODIM (an acronym in Portuguese for Interactive and Multicriteria Decision Making) method is a

multicriteria procedure that is receiving increasing attention from the scientific community over the last few

years. In this paper, we introduce a simplified version of this procedure, which allows us to easily show that

this method is vulnerable to two paradoxes affecting the weights of the model. In order to overcome these

inconsistencies, we propose a generalization of the TODIM method and establish conditions under which

the previous paradoxes can be avoided. Moreover, we also show that the simple additive weighting (SAW)

method and, under certain hypotheses, the PROMETHEE II method can be obtained as specific cases of the

generalized TODIM method.

Keywords: Multiple criteria analysis, TODIM method, weight consistency, weight monotonicity, SAW

method and PROMETHEE method.

1. Introduction

Multiple criteria decision making (MCDM) has experienced significant development in the last few

decades due mainly to the wide variety of problems that can be addressed using this methodology. A broad

survey of the current state of this field can be found in Greco et al. [20]. Nowadays, multicriteria methods

are an essential tool in the resolution of many real-world decision making problems in which different

criteria have to be taken into account (see, for instance, Mulliner et al. [30], Diaz-Balteiro et al. [10], and

Marttunen et al. [29]).

TODIM (an acronym in Portuguese for Interactive and Multicriteria Decision Making) is a multicriteria

method introduced by Gomes and Lima [14, 15]. The TODIM method, which is based on a pairwise
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comparison of the alternatives, calculates for each criterion the dominance of one alternative over another

by using the value function introduced by Kahneman and Tversky [25] (see also Tversky and Kahneman

[35]) in the framework of the prospect theory. This value function, which shows an S-shaped growth curve,

allows the behavior of the decision maker (DM) to be reflected with respect to gains and losses. Finally, the

overall performance of each alternative is determined by using an additive function.

In recent years, the TODIM method has received increased attention from the scientific community (see,

for instance, Passos and Gomes [31], Passos et al. [32], and Lee and Shih [26]), and it has been applied to

different multicriteria problems. For example, the TODIM method has been used to evaluate residential

properties available for rent in the city of Volta Redonda, Brazil (Gomes and Rangel [17]), to select the best

option for the location of the natural gas reserves discovered in the Santos basin, Brazil (Gomes et al. [18]),

and to rank chemical industries and Thermal Power Station Units (Soni et al. [34]). It is also worth noting

that the TODIM method has been extended to deal with data represented by fuzzy sets (see, for instance,

Fan et al. [11], Zhang and Xu [41], Wang et al. [37], Qin et al. [33], Ji et al. [23, 24], and Yu et al. [40]).

In this paper we carry out an analysis of the TODIM method. Firstly, we will present a simplification of

the function that provides the dominance degree of each alternative over the others with respect to different

criteria. Moreover, we will give some examples showing that this method is vulnerable to two paradoxes

concerning the weights of the model. In order to overcome these inconsistencies, we will take the following

steps:

1. In the framework of multicriteria methods, we will introduce two properties that avoid the occurrence

of the above mentioned paradoxes. These properties will be called: weight consistency and weight

monotonicity.

2. We will propose a generalization of the TODIM method.

3. We will give conditions under which the generalized TODIM method satisfies weight consistency

and weight monotonicity.

Lastly, we will see that two well-known multicriteria methods, the simple additive weighting (SAW) method

and the PROMETHEE II method (assuming for the latter certain hypotheses), can be obtained as particular

cases of this new procedure.

The remainder of the paper is organized as follows: Section 2 is devoted to recall the TODIM method.

In Section 3 we simplify this method and show two paradoxes affecting the weights of the model. In

Section 4 we propose a generalization of the TODIM method and give conditions under which the previous
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paradoxes can be avoided. In Section 5 we show that some multicriteria methods such as the SAW method

and, under certain hypotheses, the PROMETHEE II method are specific cases of the generalized TODIM

method. Finally, some concluding remarks are provided in Section 6.

2. The TODIM method

Let A = {A1, . . . , An} be a finite set of alternatives and let C = {C1, . . . ,Cm} be a finite set of crite-

ria in an MCDM problem. The sets of indices are denoted by N and M, respectively. We suppose that

the performance of all alternatives with respect to all criteria are known and we denote by xik the perfor-

mance value of alternative Ai with respect to criterion Ck. Since criteria are usually expressed in different

units, a normalization process is generally necessary to ensure that all the values be dimensionless. In this

normalization process it is crucial to make a distinction between benefit criteria (whose values are always

better when larger) and cost criteria (whose values are always better when smaller)1. We will suppose that

a normalization process has been carried out, and we will denote by zik ∈ [0, 1] the normalized value of

alternative Ai with respect to criterion Ck. The matrix Z =
(
zik

)
n×m will be called the decision matrix (see

Table 1).

Table 1: A typical decision matrix.

C1 C2 · · · Cm

A1 z11 z12 · · · z1m

A2 z21 z22 · · · z2m

· · · · · · · · · · · · · · ·

An zn1 zn2 · · · znm

Each criterion Ck has an associated weight wk > 0 which reflects the relative importance of criterion Ck.

We assume that w = (w1, . . . ,wm) is a normalized weight vector; that is,
∑m

l=1 wl = 1. The pair
(
Z,w

)
will

be called a decision problem onA. Let D be the set of decision problems onA. A multicriteria method is

a function fromD intoW, whereW is the set of weak orders (complete and transitive binary relations) on

A.

1An interesting survey of the main methods used in the normalization of the values can be found in Jahan and Edwards [22].
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The TODIM method relies on a value function that provides the dominance degree of each alternative

over the others with respect to the different criteria. As in the prospect theory of Kahneman and Tversky

[25], the aim of this value function is to model the gain and loss attitude of the DM on each criterion. The S-

shaped value function initially considered by Gomes and Lima [14] was based on the square root function,

although later Gomes and González [13] proposed a more general function.

In algorithmic form, the implementation of the TODIM method entails the following steps (see Gomes

et al. [16], Fan et al. [11] and Qin et al. [33], among others):

Step 1: For each k ∈ M, calculate the relative weight of criterion Ck to a reference criterion Cr, that is,

wkr =
wk

wr
.

The reference criterion Cr has to be chosen by the DM, although it is normal to consider the criterion

with the highest weight. In this case, wr = maxl∈M wl.

Step 2: For each i, j ∈ N and k ∈ M, calculate the dominance degree of alternative Ai over alternative A j

with respect to criterion Ck through the following expression:2

Φk(Ai, A j) =



√
wkr(zik − z jk)∑m

l=1 wlr
, if zik ≥ z jk,

−
1
θ

√(∑m
l=1 wlr

)
(z jk − zik)

wkr
, if zik < z jk,

(1)

where θ > 0. This parameter determines the effect of the losses (i.e., when zik < z jk): If θ > 1 the

losses are attenuated while if θ < 1 the losses are amplified. So, this parameter allows DM to rank the

alternatives according to the gains and the losses: for large values of θ the best alternatives are those

that provide more gains while for small values of θ the best alternatives are those that provide small

losses.

Step 3: For each i, j ∈ N, calculate the overall dominance degree of alternative Ai over alternative A j,

Φ(Ai, A j) =

m∑
k=1

Φk(Ai, A j).

2This approach is also utilized in other multicriteria methods. For instance, as we will see in Section 5, the PROMETHEE

method uses a preference function over the values xik − x jk and x jk − xik.
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Step 4: For each i ∈ N, calculate the overall performance of alternative Ai,

Φ(Ai) =

n∑
j=1

Φ(Ai, A j).

Step 5: For each i ∈ N, calculate the normalized overall performance of alternative Ai by using the follow-

ing expression:

ξ(Ai) =
Φ(Ai) −min j∈N Φ(A j)

max j∈N Φ(A j) −min j∈N Φ(A j)
.

Step 6: Rank the alternatives according to the values ξ(Ai). Hence, the weak order onA is defined by

Ai < A j ⇔ ξ(Ai) ≥ ξ(A j).

It is worth noting that the classical TODIM method has been generalized by Gomes and González [13]

by introducing a more general parametric form of the function Φk(Ai, A j). To do this, they consider the

subjective value function introduced by Tversky and Kahneman [35],

v(x) =


xα, if x ≥ 0,

−λ(−x)β, if x < 0,
(2)

where 0 < α, β < 1 are estimable coefficients determining the convexity/concavity of the function and

λ > 1 is called the loss aversion coefficient3, and define the new dominance degree of alternative Ai over

alternative A j with respect to criterion Ck by:

Φk(Ai, A j) =



(
wkr(zik − z jk)∑m

l=1 wlr

)α
, if zik ≥ z jk,

−λ


(∑m

l=1 wlr
)

(z jk − zik)

wkr


α

, if zik < z jk.

(3)

Thus, when α = 0.5 and λ = 1/θ we obtain expression (1).

3. Analysis of the TODIM method

In this section we analyze the TODIM method from a double perspective. First, although this method

is relatively easy to implement, we provide a simplified version of it. Second, we show two paradoxes

affecting the weights of the model.

3Experimental studies carried out by Tversky and Kahneman [35] reveal median values of α = β = 0.88 and λ = 2.25; see also

Blavatskyy [4].
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3.1. Simplification of the model

The TODIM method is mainly based on the function Φk(Ai, A j), which returns the dominance degree

of alternative Ai over alternative A j concerning criterion Ck. This function can be simplified taking into

account that, for any k ∈ M,

wkr∑m
l=1 wlr

=
wk/wr∑m
l=1 wl/wr

=
wk∑m
l=1 wl

= wk,

and, analogously,∑m
l=1 wlr

wkr
=

1
wk
.

Therefore, for each i, j ∈ N and k ∈ M, Φk(Ai, A j) can be written as

Φk(Ai, A j) =


√

wk(zik − z jk), if zik ≥ z jk,

−
1
θ

√
z jk − zik

wk
, if zik < z jk.

(4)

In the same way, in the more general case, expression (3) becomes

Φk(Ai, A j) =


(
wk(zik − z jk)

)α
, if zik ≥ z jk,

−λ

(
z jk − zik

wk

)α
, if zik < z jk.

(5)

Notice that, for each i ∈ N, the values Φk(Ai, A j) can be gathered in an n × m matrix of the form

Φ(Ai) =



Φ1(Ai, A1) Φ2(Ai, A1) · · · Φm(Ai, A1)

Φ1(Ai, A2) Φ2(Ai, A2) · · · Φm(Ai, A2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Φ1(Ai, An) Φ2(Ai, An) · · · Φm(Ai, An)


,

where the ith row is null. Moreover, the ranking of the alternatives can be carried out without the need

to calculate the values ξ(Ai); that is, by using the values Φ(Ai). Therefore, the TODIM method can be

implemented through the following steps:

Step 1: For each i, j ∈ N and k ∈ M, calculate

Φk(Ai, A j) =


√

wk(zik − z jk), if zik ≥ z jk,

−
1
θ

√
z jk − zik

wk
, if zik < z jk.
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Step 2: For each i ∈ N, calculate the overall performance of alternative Ai,

Φ(Ai) =

n∑
j=1

m∑
k=1

Φk(Ai, A j),

which corresponds to the sum of all the elements of the matrix Φ(Ai).

Step 3: Rank the alternatives according to the values Φ(Ai).

3.2. Two paradoxes

A paradox occurs when a multicriteria method produces an undesirable outcome, which may be re-

garded by some people as surprising or as counter-intuitive (see Felsenthal [12, p. 20]). We are going to

show that the TODIM method is vulnerable to two paradoxes affecting the weights of the model. The first

one has been pointed out by Lourenzutti and Krohling [27, p. 6462]4 (see also Lee and Shih [26]) by using

the decision matrix of Table 2.

Table 2: First decision matrix (first paradox).

C1 C2

A1 0 1

A2 1 0

Given a weight vector w = (w1,w2), it seems logical to think that A2 � A1 if w1 > w2, and A1 � A2

when w2 > w1. But, as we will see next, this does not always occur. When we apply the TODIM method

by using the algorithm given in Subsection 3.1 we get5

Φw(A1) =


0 0

−
1

θ
√

w1

√
w2

 , Φw(A2) =


√

w1 −
1

θ
√

w2

0 0

 ,
4Notice that these authors explain the paradox through the expressions given in Section 2. However, for the sake of clarity, we

will use the expressions given in Subsection 3.1.
5In the TODIM method, the expressions Φk(Ai, A j), Φ(Ai), and Φ(Ai) depend on the decision problem

(
Z,w

)
, although, for the

sake of simplicity, we have avoided indicating this dependency in the notation. However, given that in some parts of the paper we

are going to consider different weight vectors, we will use the name of the vector as a superscript to the letters or symbols when

necessary to avoid misunderstandings.
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and the overall performances of these alternatives are

Φw(A1) =
√

w2 −
1

θ
√

w1
, Φw(A2) =

√
w1 −

1
θ
√

w2
.

Since w2 is in the denominator of the second addend of Φw(A2), small values of w2 involve large values of

the expression 1/
(
θ
√

w2
)
, and, consequently, Φw(A2) takes smaller values than Φw(A1). For instance, when

θ = 1 and w = (0.9, 0.1), we obtain Φw(A1) = −0.738 > −2.213 = Φw(A2). In fact, fixed θ, it is possible to

get the weight vectors w for which A1 �
w A2. Assuming that w1 > w2, we have

Φw(A1) > Φw(A2) ⇔
√

w2 −
1

θ
√

w1
>
√

w1 −
1

θ
√

w2
⇔ θw2

√
w1 −

√
w2 > θw1

√
w2 −

√
w1

⇔ θ
√

w1
√

w2(
√

w1 −
√

w2) < (
√

w1 −
√

w2) ⇔ θ <
1

√
w1w2

.

As we can see in the above expression, the paradox appears as w2 approaches zero. This paradox can

also be shown by using a more general decision matrix6. For instance, consider the decision matrix given

in Table 3.

Table 3: Second decision matrix (first paradox).

C1 C2 C3 C4

A1 0.8 0 1 1

A2 0.7 0.4 0.9 0.2

A3 0.7 0.4 0.2 0.9

A4 0 1 0.3 0.3

A5 1 0.6 0 0

When we compare alternatives A2 and A3 we see that both alternatives have the same scores with

respect to criteria C1 and C2, while the scores of criteria C3 and C4 are switched. Moreover, in order to

avoid that the order between A2 and A3 may be affected by other alternatives7, the scores of each one of

the remaining alternatives with respect to criteria C3 and C4 will be held equal. Given the symmetry of the

decision matrix with respect to alternatives A2 and A3 and criteria C3 and C4, it seems logical to think that

6We use this new decision matrix in order to illustrate the weight consistency property, which will be established in Section 4.
7This shortcoming is known as the rank reversal problem and it may be suffered by pairwise comparison methods; see, for

instance, De Keyser and Peeters [9], Wang and Triantaphyllou [38], and Verly and De Smet [36].
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Φ(A2) ≥ Φ(A3) when w3 ≥ w4 while Φ(A3) ≥ Φ(A2) if w4 ≥ w3. However, if we take, for instance, θ = 1

and w = (0.2, 0.2, 0.5, 0.1), we get Φ(A2) = −8.977 < −6.776 = Φ(A3).

Let us now look at the second paradox. Consider a decision problem with three alternatives and two

criteria, where the decision matrix is given in Table 4 and the weight vector is w = (0.7, 0.3). When we

Table 4: Decision matrix (second paradox).

C1 C2

A1 1 0.6

A2 0.4 1

A3 0 0

apply the TODIM method with θ = 1 the matrices Φw(A1) and Φw(A2) corresponding to A1 and A2 are

Φw(A1) =


0 0

0.648 −1.155

0.837 0.424

 , Φw(A2) =


−0.926 0.346

0 0

0.529 0.548

 ,
and the overall performances of these alternatives are Φw(A1) = 0.754 and Φw(A2) = 0.497; hence A1 �

w

A2. Consider now the weight vector w′ = (0.9, 0.1). Given that A1 has a better performance value than A2

with respect to criterion C1 (and the weight of C1 has increased) and A1 has a worse performance value than

A2 with respect to criterion C2 (and the weight of C2 has decreased), it seems reasonable to think that the

relationship between A1 and A2 should not change with this new weight vector; that is, A1 �
w′ A2. However,

when we calculate the dominance degrees among the alternatives, we get

Φw′(A1) =


0 0

0.735 −2

0.949 0.245

 , Φw′(A2) =


−0.816 0.2

0 0

0.6 0.316

 ,
and the overall performances of these alternatives are Φw′(A1) = −0.071 and Φw′(A2) = 0.3; so A2 �

w′ A1.

This change is mainly due to the difference between Φw
2 (A1, A2) = −1.155 and Φw′

2 (A1, A2) = −2. Given

that the new weight w′2 = 0.1 is less than the initial weight w2 = 0.3, Φw′
2 (A1, A2) should also be less than

Φw
2 (A1, A2) in absolute value. However, it is considerably higher due to Φk(Ai, A j) is, in the case of losses,

inversely proportional to the weight wk (it appears in the denominator of the expression).
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The previous shortcoming may also appear in real MCDM problems. For instance, consider the case

study carried out by Gomes and Rangel [17], where the TODIM method was applied to rank fifteen proper-

ties located in different neighborhoods in the city of Volta Redonda (Brazil) by using eight criteria: Location

(C1), Constructed area (C2), Construction quality (C3), State of conservation (C4), Number of garage spaces

(C5), Number of rooms (C6), Attractions (C7), and Security (C8). The decision matrix utilized by these au-

thors8 is shown in Table 5 and w = (0.25, 0.15, 0.10, 0.20, 0.05, 0.10, 0.05, 0.10) was the weight vector used.

The TODIM method was applied with θ = 1, and the two best properties were A5 and A14 (A5 �
w A14, see

Table 5: Decision matrix taken from Gomes and Rangel [17].

C1 C2 C3 C4 C5 C6 C7 C8

A1 0.068 0.103 0.1 0.075 0.045 0.069 0.174 0

A2 0.091 0.064 0.067 0.05 0.045 0.046 0.087 0

A3 0.068 0.123 0.033 0.05 0.091 0.057 0.043 0

A4 0.068 0.044 0.067 0.075 0.091 0.057 0.174 0

A5 0.114 0.127 0.1 0.1 0.182 0.103 0.043 0.143

A6 0.045 0.031 0.067 0.075 0.045 0.057 0.043 0

A7 0.023 0.03 0.033 0.025 0.045 0.046 0 0.143

A8 0.114 0.028 0.067 0.075 0.045 0.069 0 0.143

A9 0.045 0.043 0.067 0.075 0 0.069 0 0

A10 0.045 0.042 0.033 0.075 0.045 0.057 0.043 0

A11 0.091 0.099 0.067 0.05 0.091 0.08 0.13 0.143

A12 0.023 0.032 0.033 0.025 0.045 0.057 0.087 0

A13 0.045 0.057 0.1 0.075 0.091 0.069 0.043 0.143

A14 0.068 0.113 0.1 0.075 0.091 0.092 0.087 0.143

A15 0.091 0.064 0.067 0.1 0.045 0.069 0.043 0.143

Table 10 in Gomes and Rangel [17]). The overall performances of these alternatives (without normalizing)

were Φw(A5) = 0.317 and Φw(A14) = −2.934.

When we compare A5 and A14, we note that A5 has a better performance value than A14 with respect to

8The normalization was carried out through the expression zik =
xik∑n

j=1 x jk
.
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criteria C1, C2, C4, C5 and C6; they have the same performance value with respect to criteria C3 and C8,

and only with respect to criterion C7 did property A5 have a worse performance value than A14. Hence, one

would expect that a decrease in the weight of criterion C7 and an increase in the weight of one of criteria

C1, C2, C4, C5 or C6 should preserve the order between A5 and A14.

However, this is not the case, and as w7 approaches zero, the order between A5 and A14 is reversed.

For instance, in Table 6 we show the overall performances of A5 and A14 when the weight of criterion C7

decreases by 0.04 units and the weight of one of criteria C1, C2, C4, C5 or C6 increases by the same amount9.

Notice that, in all cases, A14 �
w′ A5.

Table 6: Overall performances by using different weight vectors.

C1 C2 C4 C5 C6

Φw′(A5) −8.756 −8.706 −8.765 −8.497 −8.712

Φw′(A14) −7.440 −7.405 −7.505 −7.109 −7.426

In fact, it is possible, by using mathematical software, to obtain the values of the weight of criterion C7

for which the order between A5 and A14 is reversed. These values, given in terms of intervals, are shown in

Table 7.10

Table 7: Values of w′7 for which A14 �
w′ A5.

C1 C2 C4 C5 C6

w′7 (0, 0.01408) (0, 0.01403) (0, 0.01388) (0, 0.01438) (0, 0.01398)

As we will see in the next section, the previous paradoxes can be avoided by using nondecreasing

functions in the definition of Φk(Ai, A j).

9For instance, the overall performances of A5 and A14 that appear under the label C6 are obtained by using the weight vector

w′ = (0.25, 0.15, 0.10, 0.20, 0.05, 0.14, 0.01, 0.10).
10Numbers have been rounded to five decimal places. The interval (0, 0.01408) that appears under the label C1 means that if

w′7 ∈ (0, 0.01408), w′1 = w1 + (w7 − w′7) = 0.3 − w′7, and w′i = wi for any i , 1, 7, then A14 �
w′ A5.
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4. The generalized TODIM method and its properties

The paradoxes shown in the previous section bring into question the importance of the weights. Hence,

it seems necessary to introduce certain properties which prevent the occurrence of such paradoxes. These

properties, which we will call weight consistency and weight monotonicity, will be defined for any multicri-

teria method.

Definition 1. Let F be a multicriteria method. F is weight consistent if for each decision problem
(
Z,w

)
where there exist two alternatives Ap and Aq and two criteria Cr and Cs such that zpr = zqs ≥ zps = zqr,

zpk = zqk for all k , r, s and z jr = z js for all j , p, q, the following condition is satisfied:

wr ≥ ws ⇒ Ap < Aq.

Definition 2. Let F be a multicriteria method. F satisfies weight monotonicity if for each decision problem(
Z,w

)
, for each pair of alternatives Ap and Aq and each pair of criteria Cr and Cs such that zpr ≥ zqr and

zps ≤ zqs, and for each normalized weight vector w′ such that w′k = wk (k , r, s), w′r = wr + ε, and

w′s = ws − ε, where 0 < ε < ws, the following condition is satisfied:

Ap <w Aq ⇒ Ap <w′ Aq.

As we have previously seen, the TODIM method does not satisfy the above properties when the function

Φk(Ai, A j) is defined through expression (4). Therefore, we are going to introduce a more general form of

the function Φk(Ai, A j):

Φk(Ai, A j) =


g1(wk) f1(zik − z jk), if zik ≥ z jk,

−g2(wk) f2(z jk − zik), if zik < z jk,

(6)

where g1, g2 : (0, 1) −→ (0,+∞), f1, f2 : [0, 1] −→ [0,+∞) and f1(0) = f2(0) = 0. Notice that expres-

sion (4) is obtained when g1(x) = f1(x) = f2(x) =
√

x and g2(x) = 1/
(
θ
√

x
)
. Likewise, expression (5) can

be recovered if g1(x) = f1(x) = f2(x) = xα and g2(x) = λ/xα.

Hence, the implementation of the generalized TODIM method entails the following steps:

Step 1: For each i, j ∈ N and k ∈ M, calculate

Φk(Ai, A j) =


g1(wk) f1(zik − z jk), if zik ≥ z jk,

−g2(wk) f2(z jk − zik), if zik < z jk,

(7)

where g1, g2, f1 and f2 satisfy the properties listed above.
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Step 2: For each i ∈ N, calculate the overall performance of alternative Ai,

Φ(Ai) =

n∑
j=1

m∑
k=1

Φk(Ai, A j),

which corresponds to the sum of all the elements of the matrix Φ(Ai).

Step 3: Rank the alternatives according to the values Φ(Ai).

As we will see in Theorems 1 and 2, we can guarantee the weight consistency and the weight mono-

tonicity of the generalized TODIM method when the functions g1, g2, f1 and f2 are nondecreasing11. The

following technical lemma will be useful in the proof of both theorems.

Lemma 1. Consider the generalized TODIM method defined through expression (7) and let
(
Z,w

)
be a

decision problem where there exist two alternatives Ap and Aq and two criteria Cr and Cs such that zpr ≥ zqr,

zps ≤ zqs. If f1 and f2 are nondecreasing functions, then

Φ(Ap) −Φ(Aq) = K + g1(wr)K1 + g2(wr)K2 − g1(ws)K3 − g2(ws)K4,

where

K =
∑
k,r,s

n∑
j=1

Φk(Ap, A j) −
∑
k,r,s

n∑
j=1

Φk(Aq, A j),

K1 =
∑
j∈J+

pr

f1(zpr − z jr) −
∑
j∈J+

qr

f1(zqr − z jr),

K2 =
∑
j∈J−qr

f2(z jr − zqr) −
∑
j∈J−pr

f2(z jr − zpr),

K3 =
∑
j∈J+

qs

f1(zqs − z js) −
∑
j∈J+

ps

f1(zps − z js),

K4 =
∑
j∈J−ps

f2(z js − zps) −
∑
j∈J−qs

f2(z js − zqs),

K1,K2,K3,K4 ≥ 0 and, for each i ∈ N and k ∈ M, the sets J+
ik and J−ik are defined by

J+
ik = { j ∈ N | zik ≥ z jk}, J−ik = { j ∈ N | zik < z jk}.

Proof. Let
(
Z,w

)
be a decision problem where there exist two alternatives Ap and Aq and two criteria Cr

and Cs such that zpr ≥ zqr and zps ≤ zqs. Given i ∈ N and k ∈ M, we define the following sets:

J+
ik = { j ∈ N | zik ≥ z jk}, J−ik = { j ∈ N | zik < z jk}.

11It is worth noting that neither g2(x) = 1/
(
θ
√

x
)

nor g2(x) = λ/xα are nondecreasing functions.
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Notice that J+
ik ∪ J−ik = N and J+

ik ∩ J−ik = ∅. By using these sets, the overall performance of alternative Ai

can be calculated by means of the following expression:

Φ(Ai) =
∑
k,r,s

n∑
j=1

Φk(Ai, A j) +

n∑
j=1

Φr(Ai, A j) +

n∑
j=1

Φs(Ai, A j)

=
∑
k,r,s

n∑
j=1

Φk(Ai, A j) + g1(wr)
∑
j∈J+

ir

f1(zir − z jr) − g2(wr)
∑
j∈J−ir

f2(z jr − zir)

+ g1(ws)
∑
j∈J+

is

f1(zis − z js) − g2(ws)
∑
j∈J−is

f2(z js − zis).

Consider now Ap and Aq. By the previous identity we have

Φ(Ap) −Φ(Aq) =
∑
k,r,s

n∑
j=1

Φk(Ap, A j) −
∑
k,r,s

n∑
j=1

Φk(Aq, A j)

+ g1(wr)

∑
j∈J+

pr

f1(zpr − z jr) −
∑
j∈J+

qr

f1(zqr − z jr)

 + g2(wr)

∑
j∈J−qr

f2(z jr − zqr) −
∑
j∈J−pr

f2(z jr − zpr)


− g1(ws)

∑
j∈J+

qs

f1(zqs − z js) −
∑
j∈J+

ps

f1(zps − z js)

 − g2(ws)

∑
j∈J−ps

f2(z js − zps) −
∑
j∈J−qs

f2(z js − zqs)

 ,
that is,

Φ(Ap) −Φ(Aq) = K + g1(wr)K1 + g2(wr)K2 − g1(ws)K3 − g2(ws)K4.

Now, we are going to prove that K1 ≥ 0. Since zpr ≥ zqr and zps ≤ zqs, it is straightforward to check that we

have the following relationships:

J+
qr ⊆ J+

pr, J−pr ⊆ J−qr, J+
ps ⊆ J+

qs, J−qs ⊆ J−ps,

and, therefore,

K1 =
∑
j∈J+

pr

f1(zpr − z jr)−
∑
j∈J+

qr

f1(zqr − z jr) =
∑
j∈J+

qr

(
f1(zpr − z jr)− f1(zqr − z jr)

)
+

∑
j∈J+

pr\J+
qr

f1(zpr − z jr) ≥ 0,

where the last inequality is obtained by taking into account that zpr − z jr ≥ zqr − z jr and f1 is nondecreasing.

In the same way, the following inequalities can be proven:

K2 =
∑
j∈J−qr

f2(z jr − zqr) −
∑
j∈J−pr

f2(z jr − zpr) ≥ 0,

K3 =
∑
j∈J+

qs

f1(zqs − z js) −
∑
j∈J+

ps

f1(zps − z js) ≥ 0,

K4 =
∑
j∈J−ps

f2(z js − zps) −
∑
j∈J−qs

f2(z js − zqs) ≥ 0.
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Theorem 1. Consider the generalized TODIM method defined through expression (7). If f1, f2, g1 and g2

are nondecreasing functions, then the TODIM method is weight consistent.

Proof. Let
(
Z,w

)
be a decision problem where there exist two alternatives Ap and Aq and two criteria Cr

and Cs such that zpr = zqs ≥ zps = zqr, zpk = zqk for all k , r, s, and z jr = z js for all j , p, q. Since f1 and

f2 are nondecreasing, by Lemma 1 we have

Φ(Ap) −Φ(Aq) = K + g1(wr)K1 + g2(wr)K2 − g1(ws)K3 − g2(ws)K4,

where K1,K2,K3,K4 ≥ 0. Moreover, due to the conditions satisfied by Z, it is easy to check that K = 0,

K1 = K3 and K2 = K4. Hence,

Φ(Ap) −Φ(Aq) =
(
g1(wr) − g1(ws)

)
K1 +

(
g2(wr) − g2(ws)

)
K2.

Finally, since g1 and g2 are nondecreasing, when wr ≥ ws we get Φ(Ap) −Φ(Aq) ≥ 0, i.e., Ap < Aq.

Theorem 2. Consider the generalized TODIM method defined through expression (7). If f1, f2, g1 and g2

are nondecreasing functions, then the TODIM method satisfies weight monotonicity.

Proof. Let
(
Z,w

)
be a decision problem where there exist two alternatives Ap and Aq and two criteria Cr and

Cs such that zpr ≥ zqr, zps ≤ zqs and Ap <w Aq, i.e., Φw(Ap) ≥ Φw(Aq). Since f1 and f2 are nondecreasing,

by Lemma 1 we have12

Φw(Ap) −Φw(Aq) = Kw + g1(wr)K1 + g2(wr)K2 − g1(ws)K3 − g2(ws)K4 ≥ 0,

that is,

Kw + g1(wr)K1 + g2(wr)K2 ≥ g1(ws)K3 + g2(ws)K4,

where K1,K2,K3,K4 ≥ 0. Consider now 0 < ε < ws and a weight vector w′ defined by w′k = wk (k , r, s),

w′r = wr + ε, and w′s = ws − ε. Since g1 and g2 are nondecreasing, by replacing wr by wr + ε and ws by

ws − ε, we also get

Kw′ + g1(w′r)K1 + g2(w′r)K2 > g1(w′s)K3 + g2(w′s)K4,

that is,

Φw′(Ap) −Φw′(Aq) = Kw′ + g1(w′r)K1 + g2(w′r)K2 − g1(w′s)K3 − g2(w′s)K4 ≥ 0,

where the first equality is obtained from Lemma 1. Hence, Ap <w′ Aq.

12Notice that K1,K2,K3,K4 do not depend on the weights wk, k ∈ M, and K only depends on the weights wk, where k , r, s.
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5. Specific cases of the generalized TODIM method

The functions g1, g2, f1 and f2 that appear in expression (7) offer a lot of possibilities in the implemen-

tation of the generalized TODIM method. For instance, some particular cases of the generalized TODIM

method have already been used in the literature. Thus, Lourenzutti and Krohling [27, p. 6462] consider

Φk(Ai, A j) =


√

wk(zik − z jk), if zik ≥ z jk,

−
1
θ

√
wk(z jk − zik), if zik < z jk,

which is obtained from expression (7) when g1(x) = f1(x) =
√

x, g2(x) = (1/θ)
√

x and f2(x) =
√

x (or,

alternatively, g2(x) =
√

x and f2(x) = (1/θ)
√

x ), while if we take g1(x) = f1(x) = xα, g2(x) = λxβ and

f2(x) = xβ (or, alternatively, g2(x) = xβ and f2(x) = λxβ), with α = β = 0.88 and λ = 2.25, we obtain the

expression used by Lee and Shih [26, p. 909],

Φk(Ai, A j) =


(
wk(zik − z jk)

)α
, if zik ≥ z jk,

−λ
(
wk(z jk − zik)

)β
, if zik < z jk.

(8)

Notice that the generalized TODIM method allows us to obtain the same ordering of the alternatives as

the SAW method (see, for instance, Hwang and Yoon [21]). Thus, when g1(x) = g2(x) = f1(x) = f2(x) = x,

we have Φk(Ai, A j) = wk(zik − z jk) for any i, j ∈ N and k ∈ M. Therefore, for each i ∈ N,

Φ(Ai) =

m∑
k=1

n∑
j=1

Φk(Ai, A j) =

m∑
k=1

wk

nzik −

n∑
j=1

z jk

 = n
m∑

k=1

wk(zik − z̄•k),

where z̄•k is the mean of the elements of the kth column of the matrix Z. Hence,

Φ(Ap) ≥ Φ(Aq) ⇔
m∑

k=1

wk(zpk − z̄•k) ≥
m∑

k=1

wk(zqk − z̄•k) ⇔
m∑

k=1

wkzpk ≥

m∑
k=1

wkzqk.

It is also worth noting that, under certain hypotheses, the PROMETHEE II method is also a specific case

of the generalized TODIM method. The PROMETHEE II method, which was developed by Brans [5] (see

also Brans and Vincke [7] and Brans and De Smet [6]), provides a complete ranking among the alternatives

(in contrast to PROMETHEE I, which only returns a partial ranking). When it comes to describing the

PROMETHEE II method, we can assume, without loss of generality, that all criteria are to be maximized13.

Using our notation, the PROMETHEE II method can be implemented by means of the following steps (see,

for instance, Behzadian et al. [1]):

13If criterion Ck is to be minimized, it is to be maximized when we use the values −xik for all i ∈ N. Notice that this procedure

is equivalent to consider the preference function defined by expression (6.9) in Brans and De Smet [6, p. 194].
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Step 1: For each i, j ∈ N and k ∈ M, calculate the degree to which Ai is preferred to A j with respect to

criterion Ck; that is,

Pk(Ai, A j) = Fk(xik − x jk),

where Fk : R −→ [0, 1] is a nondecreasing function such that Fk(x) = 0 when x ≤ 0. Some examples

of functions satisfying the previous properties are shown in Brans and De Smet [6, p. 195].

Step 2: For each i, j ∈ N calculate the degree to which Ai is preferred to A j over all criteria; i.e.,

π(Ai, A j) =

m∑
k=1

wkPk(Ai, A j).

Step 3: For each i ∈ N calculate the net outranking flow; that is,

φ(Ai) =
1

n − 1

n∑
j=1

(
π(Ai, A j) − π(A j, Ai)

)
.

Step 4: Rank the alternatives according to the values φ(Ai).

Notice that

(n − 1)φ(Ai) =

n∑
j=1

m∑
k=1

wk
(
Fk(xik − x jk) − Fk(x jk − xik)

)
,

and, due to the properties satisfied by Fk, we have

wk
(
Fk(xik − x jk) − Fk(x jk − xik)

)
=


wkFk(xik − x jk), if xik ≥ x jk,

−wkFk(x jk − xik), if xik < x jk.

Since the values φ(Ai) and (n − 1)φ(Ai) provide the same rank of alternatives, the PROMETHEE II method

can be implemented by means of the following steps:

Step 1: For each i, j ∈ N and k ∈ M, calculate

δk(Ai, A j) =


wkFk(xik − x jk), if xik ≥ x jk,

−wkFk(x jk − xik), if xik < x jk.

Step 2: For each i ∈ N, calculate the overall performance of alternative Ai,

δ(Ai) =

n∑
j=1

m∑
k=1

δk(Ai, A j).
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Step 3: Rank the alternatives according to the values δ(Ai).

Therefore, when the decision matrix X is normalized and all functions Fk are the same (Fk = F for all

k ∈ M), the PROMETHEE II method is also a specific case of the generalized TODIM method; that is,

δk(Ai, A j) is obtained from expression (7) by taking g1(x) = g2(x) = x and f1 = f2 = F
∣∣∣
[0,1].

Notice also that in PROMETHEE II we can get a very simple expression of δ(Ai) when all functions Fk

are type 1 functions14 (see Brans and De Smet [6, p. 195]); that is,

F(x) =


0, if x ≤ 0,

1, if x > 0.

Then the value δk(Ai, A j) becomes

δk(Ai, A j) =


wk, if xik > x jk,

0, if xik = x jk,

−wk, if xik < x jk,

and, consequently, the overall performance of alternative Ai is15

δ(Ai) =

m∑
k=1

n∑
j=1

δk(Ai, A j) =

m∑
k=1

wk
(
n+

ik − n−ik
)
,

where n+
ik and n−ik denote, respectively, the number of alternatives having a worse (better) score than Ai with

respect to criterion Ck (roughly speaking, the number of victories and defeats of Ai with respect to criterion

Ck); i.e.,

n+
ik = #{ j ∈ N | xik > x jk}, n−ik = #{ j ∈ N | xik < x jk},

where the symbol # denotes the cardinality of a set.

Next we show other interesting particular cases that we can get from expression (6). Since the weight

vector w is previously fixed and reflects the importance of the criteria, it would seem wise not to modify

14The main advantage of this function is that the DM does not need to provide any parameter. See, for instance, Govindan et al.

[19] for an example of a recent application of this function.
15Notice that δ(Ai) can be seen as the natural generalization of the score given by the adjusted Borda method (Black [2, pp. 75-

77], Black [3], Coughlin [8]), when the weights of the criteria are taken into account; that is, if wk = 1/m for all k, and for each

criterion we ranking the alternatives according to their values, then we obtain the score given by the adjusted Borda method.
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these weights; that is, to consider g1(x) = g2(x) = x. In this case, the function Φk(Ai, A j) becomes

Φk(Ai, A j) =


wk f1(zik − z jk), if zik ≥ z jk,

−wk f2(z jk − zik), if zik < z jk.

Now, according to the spirit of the subjective value function introduced by Tversky and Kahneman [35]

(see expression (2)), we can distinguish the following cases:16

1. When f1(x) = xα and f2(x) = 0 we have

Φk(Ai, A j) =


wk(zik − z jk)α, if zik ≥ z jk,

0, if zik < z jk,

that is, only gains are taken into account.

2. When f1(x) = 0 and f2(x) = λxβ we get

Φk(Ai, A j) =


0, if zik ≥ z jk,

−λwk(z jk − zik)β, if zik < z jk,

i.e., only losses are considered. Note that, in this case, the value of λ has no influence on the final

ranking of the alternatives. So, we can take λ = 1.

3. When f1(x) = xα and f2(x) = λxβ we have

Φk(Ai, A j) =


wk(zik − z jk)α, if zik ≥ z jk,

−λwk(z jk − zik)β, if zik < z jk.

(9)

In the following we are going to apply some of the previous methods to the case study carried out

by Gomes and Rangel [17]. In Table 8 we collect the ordering of the alternatives when the following

methods are employed: the original TODIM method utilized by Gomes and Rangel [17] (Method 1); the

generalized TODIM method with α = β = 0.5 and λ = 1 by using expression (8) (Method 2), and by using

expression (9) (Method 3); the generalized TODIM method with α = β = 0.88 and λ = 2.25 by using

expression (8) (Method 4), and by using expression (9) (Method 5); and the SAW method (Method 6).

Although the ordering of the alternatives is very similar in the six methods, it can be appreciated that

Method 1 returns a slightly different ranking, especially in the position obtained by alternatives A13 and A15.

This different behavior of the original TODIM method could be due to the fact that, in the case of losses,

the value Φk(Ai, A j) is inversely proportional to the weight wk.

16In all cases, 0 < α, β < 1 and λ > 0. Remember that if λ > 1 the losses are amplified while if λ < 1 the losses are attenuated.
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Table 8: Ranking of the alternatives for different multicriteria methods.

Method 1 Method 2 Method 3 Method 4 Method 5 Method 6

A1 5 5 5 5 6 6

A2 10 10 9 9 9 10

A3 9 9 10 10 10 9

A4 7 8 8 8 8 8

A5 1 1 1 1 1 1

A6 11 11 12 11 11 11

A7 15 14 14 14 14 14

A8 8 7 6 6 5 5

A9 14 12 11 13 12 12

A10 12 13 13 12 13 13

A11 3 3 4 3 3 3

A12 13 15 15 15 15 15

A13 4 6 7 7 7 7

A14 2 2 2 2 2 2

A15 6 4 3 4 4 4

6. Concluding remarks

In this paper we have analyzed the TODIM method and suggested a simplification of this model avoiding

the calculation of the relative weight of the criteria with respect to a reference criterion. In this way, the

function providing the dominance degree of each alternative over the others with respect to the different

criteria is simpler than that given in the original model proposed by Gomes and Lima [14, 15]. Moreover,

we have illustrated with examples that this method is vulnerable to two paradoxes concerning the weights

of the model. To avoid these paradoxes we have established two properties, called weight consistency and

weight monotonicity, that prevent their occurrence. Furthermore, we have proposed a generalization of the

TODIM method and established conditions under which this new procedure satisfies the previous properties.

It is worth mentioning that both the original and the generalized TODIM method are based on pairwise

comparisons and, therefore, they may suffer the well-known rank reversal phenomenon; that is, the relative
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ranking between two alternatives could be reversed when another alternative is added or deleted.17 Notice

also that expression (7) provides a great flexibility to the DMs, since they only need to choose nondecreasing

functions to guarantee the fulfillment of weight consistency and weight monotonicity. In fact, we have also

shown that two of the most prominent multicriteria methods, the SAW and the PROMETHEE II methods

(assuming for the latter certain hypotheses), can be obtained from the generalized TODIM method. In

addition to these two methods, expression (9) is very interesting because it allows us to reflect the spirit of

the subjective value function without modifying the weights of the criteria. Hence, the generalized TODIM

method seems an appropriate procedure for solving multicriteria problems in future research.
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