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Abstract

The choice of weights vectors in multiple attribute decision making (MADM) problems has generated an

important literature, and a large number of methods have been proposed for this task. In some situations the

decision maker (DM) may not be willing or able to provide exact values of the weights, but this difficulty

can be avoided by allowing the DM to give some variability in the weights. In this paper we propose a model

where the weights are not fixed, but can take any value from certain intervals, so the score of each alternative

is the maximum value that the weighted mean can reach when the weights belong to those intervals. We

provide a closed-form expression for the scores achieved by the alternatives so that they can be ranked them

without solving the proposed model, and apply this new method to an MADM problem taken from the

literature.
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1. Introduction

There is a wide variety of problems that can be solved through the use of Multiple Attribute Decision

Making (MADM) methods (see, for instance, Greco et al., 2016). Many of these methods require informa-

tion about the relative importance of each attribute (for a classification of MADM methods according to the

available information see, for instance, Hwang & Yoon, 1981, p. 9 and Zavadskas & Turskis, 2011, p. 404),

and in many of them it is necessary to provide a weight for each attribute. For this reason, there exist in the

literature a large number of procedures to determine the weights of the attributes (see, for instance, Wang

& Luo, 2010, Roszkowska, 2013, Chin et al., 2015, and Fu et al., 2018). In accordance with these authors,

it is usual to classify the methods into three categories: subjective methods (also called by other authors as
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direct explication or a priori weights), where the weights of the attributes are calculated by means of the in-

formation provided by the decision maker (DM); objective methods (also called by other authors as indirect

explication or a posteriori weights), where the weights are determined through the information collected

in the decision matrix; and integrated methods, where the weights are obtained by using both information

sources.

It is worth noting that, in some cases, getting the weights through the decision matrix may have un-

desirable effects. For instance, Kao (2010) proposes a MADM method where the weights are determined

from the decision matrix by using a compromise programming technique, and uses an example given by

Jacquet-Lagrèze & Siskos (1982) to illustrate his method. In that example, ten cars have to be ranked tak-

ing into account six criteria: maximum speed (km/h), horse power (CV), space (m2), consumption in town

(lt/100 km), consumption at 120 km/h (lt/100 km), and price (francs). The weights obtained applying Kao’s

method are, respectively, 0.6346, 0.01, 0.01, 0.01, 0.01, and 0.3254. Notice that there exist four weights

that are practically zero; so the corresponding criteria have little influence on the ranking of the cars. How-

ever, some of those criteria are the space and the consumption, which should have some importance in the

ranking of the cars.

Notice also that when the weights are obtained from the decision matrix, the inclusion or exclusion of

an alternative may significantly change the importance of the weights. For instance, consider the following

example, taken from Deng et al. (2000), where seven textile companies, A1,. . . , A7, are evaluated by using

four financial ratios, which are identified as the criteria: profitability (C1), Productivity (C2), market position

(C3), and debt ratio (C4)1. The performance ratings of each company with respect to the criteria are shown

in Table 1.

When the entropy method2 is used to calculate the weights (see details in Deng et al., 2000), we get

w1 = 0.541, w2 = 0.125, w3 = 0.277, and w4 = 0.057 (see Table 4 in Deng et al., 2000). It is worth noting

that the first criterion is more important than the rest of the criteria combined; in fact, the first criterion is

about twice as important as the second most important criterion, C3. Suppose now that the DM had not

considered company A3 in its analysis3. In this case, the weights obtained with the entropy method have

been w1 = 0.335, w2 = 0.202, w3 = 0.379, and w4 = 0.084. Now, the most important criterion is C3.

1The ratings of the debt ratio were adjusted so that it could be treated as a benefit criterion.
2The entropy method is a well-known procedure based on the idea that, if all alternatives have similar values with respect to an

attribute, then a small weight should be assigned to that attribute (Zeleny, 1982).
3This company has the worst result for the first criterion, the second worst result for the third and fourth criteria, and the third

worst result for the second criterion (see Table 1 in Deng et al., 2000). Moreover, when the modified TOPSIS proposed by the
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Table 1: Performance ratings of companies.

Profitability (C1) Productivity (C2) Market position (C3) Debt ratio (C4)

A1 0.12 49469 0.15 1.21

A2 0.08 34251 0.14 1.23

A3 0.04 32739 0.09 1.12

A4 0.16 44631 0.11 1.56

A5 0.09 33151 0.13 1.09

A6 0.15 31408 0.07 1.39

A7 0.13 30654 0.17 1.16

With regard to the subjective methods, there are several methods that allow obtaining the weight vector

from the information provided by the DM (see, for instance, Wang & Luo, 2010; Chin et al., 2015; de

Almeida et al., 2016). However, these procedures are not always available because the opinions of the DMs

may be vague due to lack of information or knowledge. Sometimes the DM only provides an order of

importance among the criteria (note that, according to some authors, there are several reasons to prefer this

procedure; see Barron, 1992; Roszkowska, 2013). In this case, the attribute weights are calculated by using

the ordinal ranking of the attributes provided by the DM (see, for instance, Roszkowska, 2013; Danielson

& Ekenberg, 2014 for a revision on surrogate weights). However, it should be noted that although the DM

only provides an ordinal ranking of the attributes, it is necessary weighting the criteria from their ranks,

which may cause that the DM does not completely agree with the weights used.

One of the reasons given in the literature for the use of rank ordering weighting methods is that the DM

may not be willing or able to provide exact values of the weights. This difficulty can also be avoided by

allowing the DM to give some variability in the weights. This idea has been used, for example, in several

methods proposed for dealing with incomplete information in weighting models (see, for instance, Weber,

1987; Arbel, 1989; Salo & Hämäläinen, 1992; Edwards & Barron, 1994; Salo & Hämäläinen, 1995; Park &

Kim, 1997; Malakooti, 2000; Salo & Punkka, 2005; Mustajoki et al., 2005; Liu et al., 2018; Yu et al., 2019);

in ranked voting systems, where each candidate is evaluated with the most favorable scoring vector for her

(see, for instance, Cook & Kress, 1990; Llamazares & Peña, 2009, 2013; Llamazares, 2016, 2017, and the

authors is used with four sets of weights, this company is ranked last in the four cases (see Table 5 in Deng et al., 2000).

3



references therein), and also in the construction of composite indicators (see Nardo et al., 2008, pp. 92–94).

Note also that Liu et al. (2019) have recently proposed a model where the ranking of each alternative is

determined by the average of three rankings: the minimum and maximum ranking positions generated by

several optimization models, and the average ranking position obtained through the Monte Carlo method.

One of the simplest ways to allow the variability of the weights is through intervals, so that each weight

w j can vary in an interval [a j, b j]. Notice that interval weights have been previously used in this context.

For instance, Morais et al. (2014) conduct a study on the areas of a water distribution network on the

municipality of Carnaíba, Pernambuco (Brazil). In this study, the authors use the Revised Simos’ procedure

(see Figueira & Roy, 2002) to obtain the criteria weights for each DM and, after that, for each criterion

they consider an interval whose extremes are the minimum and maximum values obtained for the DMs.

Likewise, Rezaei (2016) proposes a non-linear minmax model to determine the criteria weights and, given

that sometimes your model may have multiple solutions, he suggests using the midpoint of certain interval

weights.

In this paper we propose a model where the weights are not fixed, but can take any value from certain

intervals, so the score of each alternative is the maximum value that the weighted mean can reach when the

weights belong to those intervals. In this way, each alternative is assessed with the most favorable weight

vector for it. We also provide a closed-form expression for the scores achieved by the alternatives so that it

is possible to rank them without the need to solve the proposed model.

The rest of the paper is organized as follows. In Section 2 we propose our model and give a closed-

form expression for the scores obtained by the alternatives. Moreover, we suggest several ways to build the

interval weights required in our model. In Section 3 we apply our model to an MADM problem taken from

Mulliner et al. (2016). Finally, some concluding remarks are provided in Section 4.

2. The model

Let A = {A1, . . . , Am} be a finite set of alternatives and let C = {C1, . . . ,Cn} be a finite set of criteria

in a multiple attribute decision making problem. We suppose that all alternatives score with respect to all

criteria are known; and we denote by xi j the performance value of alternative Ai with respect to criterion

C j. Since criteria are usually expressed in different units, a normalization process is generally necessary

to ensure that all the values are dimensionless. In this process it is essential to make a distinction between

benefit criteria (whose values are always better when larger) and cost criteria (whose values are always
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better when smaller).4 Once the normalization process has been carried out, we will denote by zi j ∈ [0, 1]

the normalized value of alternative Ai with respect to criterion C j. The matrix Z =
(
zi j

)
m×n will be call the

decision matrix (see Table 2).

Table 2: A typical decision matrix.

C1 C2 · · · Cn

A1 z11 z12 · · · z1n

A2 z21 z22 · · · z2n

· · · · · · · · · · · · · · ·

Am zm1 zm2 · · · zmn

Many MADM methods require a weight vector that reflects the importance of each criterion; that is, a

vector w = (w1, . . . ,wn) ∈ [0, 1]n such that
∑n

i=1 wi = 1. It is usual to suppose that wi > 0 for all i ∈ N,

where N denotes the set {1, . . . , n}. Among the great variety of methods proposed in the MADM field, the

simple additive weighting (SAW) method is one of the most often used because of its transparency and

simplicity. In the SAW method, the score of each alternative is obtained through the expression

Zi =

n∑
j=1

zi jw j.

In our model we consider that each weight w j can vary in an interval [a j, b j], j = 1, . . . , n; so that

the score of each alternative is the maximum value that the weighted mean can reach considering that the

weights vary in the intervals [a j, b j]; that is,

Z∗i = max
n∑

j=1

zi jw j,

s.t. a j ≤ w j ≤ b j, j = 1, . . . , n,
n∑

j=1

w j = 1.

(1)

Notice that if
∑n

j=1 a j > 1 or
∑n

j=1 b j < 1, then the feasible set is empty. On the other hand, if
∑n

j=1 a j = 1

or
∑n

j=1 b j = 1, then the feasible set has only one element. Hence, the constraints
∑n

j=1 a j < 1 <
∑n

j=1 b j

are a requirement that we ask to the intervals [a j, b j].

4A survey of the main methods used in the normalization of the values can be found in Jahan & Edwards, 2015.
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In the following theorem we give closed-form expressions for the scores of alternatives when Model (1)

is used. In this way, we can know the score obtained for each alternative without the need to solve the

model.

Theorem 1. Consider Model (1). Then

Z∗i =

p−1∑
j=1

(
zi[ j] − zi[p]

)
b[ j] + zi[p] −

n∑
j=p+1

(
zi[p] − zi[ j]

)
a[ j],

where [·] is a permutation of N such that zi[1] ≥ zi[2] ≥ · · · ≥ zi[n] and p ∈ N satisfies

p−1∑
j=1

(
b[ j] − a[ j]

)
< 1 −

n∑
j=1

a j ≤

p∑
j=1

(
b[ j] − a[ j]

)
.

To illustrate the result given in the above theorem, consider the decision matrix given in Table 3, where

we have added two rows: the first contains the interval weights of the criteria while the second shows the

amplitude of these intervals.

Table 3: A decision matrix for illustrating Theorem 1.

C1 C2 C3 C4 C5

A1 0.8 0.9 0.8 1 0.9

A2 0.9 1 0.9 0.8 0.8

Interval weights [0.19, 0.29] [0.16, 0.22] [0.13, 0.23] [0.14, 0.30] [0.10, 0.24]

Amplitude 0.10 0.06 0.10 0.16 0.14

To calculate the score obtained by alternative A1 we may proceed as follows:

1. Order the z1 j scores from highest to lowest. Notice that in this case there is more than one permutation

that provides the same order,5 so we choose one of them (the subscript indicates the criterion in which

the score has been achieved).

1C4 ≥ 0.9C2 ≥ 0.9C5 ≥ 0.8C1 ≥ 0.8C3 .

5It is important to note that the score of the alternative does not depend on the permutation chosen (see the footnote 20 in the

proof of Theorem 1).
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2. Determine the value of p. For the above permutation, the value of p is 3 since

0.16 + 0.06 < 1 − 0.72 ≤ 0.16 + 0.06 + 0.14.

3. Calculate the score of A1 by using the expression given in Theorem 1:

Z∗1 = 0.1 · 0.30 + 0 · 0.22 + 0.9 − 0.1 · 0.19 − 0.1 · 0.13 = 0.898.

Using the same procedure for alternative A2 we have

1. 1C2 ≥ 0.9C1 ≥ 0.9C3 ≥ 0.8C4 ≥ 0.8C5 .

2. p = 4 since 0.06 + 0.10 + 0.10 < 0.28 ≤ 0.06 + 0.10 + 0.10 + 0.16.

3. Z∗2 = 0.2 · 0.22 + 0.1 · 0.29 + 0.1 · 0.23 + 0.8 − 0 · 0.10 = 0.896.

The extreme case of our model is when the weights can vary in the interval [0, 1]. Then, the score of

each alternative is the maximum value it attains over all criteria.

Corollary 1. Consider Model (1) with a j = 0 and b j = 1 for all j ∈ N. Then

Z∗i = max
j=1,...,n

zi j.

Nevertheless, this extreme case does not seem the most appropriate choice on most occasions. On the

one hand, the probability that several alternatives reach the maximum score is greater than when smaller

intervals are used. On the other hand, the winning alternative may not be the most appropriate. For instance,

consider the decision matrix given in Table 4. According to Corollary 1, when the weights can vary in the

interval [0, 1], the scores of the alternatives are Z∗1 = Z∗2 = 1 and Z∗3 = 0.99. Hence, the alternative A3 is not

the winner, which does not seem very reasonable.

Table 4: Decision matrix with 3 alternatives and 2 criteria.

C1 C2

A1 1 0

A2 0 1

A3 0.99 0.99

When applying our model, it is necessary that the DM have the interval weights. If the DM instead of

having the interval weights has weight vectors, we can apply the following strategies:
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1. If the DM only has a weight vector, w = (w1, . . . ,wn), then, for each weight w j, the interval can be

constructed by taken the weight w j plus or minus a percentage of w j. For instance, if we consider

w j = 0.3 and a percentage of 10%, the interval is [0.27, 0.33] =
[
0.3(1− r), 0.3(1 + r)

]
, where r = 0.1.

Note that to avoid that the endpoints of the interval take values less than zero or greater than one, we

have to use the expression

[
max

(
0,w j(1 − r)

)
,min

(
1,w j(1 + r)

)]
,

where r > 0. But when r ∈ (0, 1] the intervals are of the form

[
w j(1 − r),min

(
1,w j(1 + r)

)]
,

and when r = 1 they are
[
0,min(1, 2w j)

]
, which means that there may be criteria that do not influence

the score of alternatives. Notice also that when r ∈ (0, 1], if we add the conditions r ≤ (1 − w j)/w j

for all j ∈ N, then w j(1 + r) ≤ 1 for all j ∈ N and, consequently, the intervals are of the form[
w j(1− r),w j(1+ r)

]
. In this case the following corollary shows the score obtained by the alternatives.

Corollary 2. Let w be a weight vector and let r ∈ (0, 1] such that r ≤ (1−w j)/w j for all j ∈ N. If we

consider Model (1) with a j = w j(1 − r) and b j = w j(1 + r) for all j ∈ N, then

Z∗i =

n∑
j=1

zi jw j + r
n∑

j=1

∣∣∣zi j − zi[p]
∣∣∣ w j,

where [·] is a permutation of N such that zi[1] ≥ zi[2] ≥ · · · ≥ zi[n] and p ∈ N satisfies

p−1∑
j=1

w[ j] < 0.5 ≤
p∑

j=1

w[ j].

It is worth noting that the value of p does not depend on the value of r. Moreover, the score Z∗i

obtained by alternative Ai is that given by the SAW method plus r times the value
∑n

j=1

∣∣∣zi j − zi[p]
∣∣∣ w j;

that is, Z∗i = SAWi + rMi, where SAWi =
∑n

j=1 zi jw j and Mi =
∑n

j=1

∣∣∣zi j − zi[p]
∣∣∣ w j. Notice also that

the graph of Z∗i as a function of r is a straight line whose slope is Mi.6

The fact of knowing the score obtained by each alternative allows us to analyze the relative order

between two alternatives: Given two alternatives Ai and A j with scores Z∗i = SAWi + rMi and Z∗j =

SAW j + rM j, then Z∗i ≥ Z∗j if

6Note also that the expression given for the score Z∗i is also valid when r = 0.
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(a) SAWi ≥ SAW j and SAWi + Mi ≥ SAW j + M j.7

(b) SAWi > SAW j, 0 < SAWi−SAW j
M j−Mi

< 1, and r ≤ SAWi−SAW j
M j−Mi

.

(c) SAWi < SAW j, 0 < SAW j−SAWi
Mi−M j

< 1, and r ≥ SAW j−SAWi
Mi−M j

.

As an immediate consequence of Corollary 2 we get the following result for the case of the weight

vector w = (1/n, . . . , 1/n).

Corollary 3. Let w = (1/n, . . . , 1/n) and r ∈ (0, 1]. If we consider Model (1) with a j = (1 − r)/n and

b j = (1 + r)/n for all j ∈ N, then

Z∗i =
1
n

n∑
j=1

zi j +
r
n

n∑
j=1

∣∣∣zi j − zi[p]
∣∣∣ ,

where [·] is a permutation of N such that zi[1] ≥ zi[2] ≥ · · · ≥ zi[n] and p = b(n + 1)/2c; that is, it is n/2

if n is even and (n + 1)/2 if n is odd.

2. If the DM has several weight vectors where at least two of them are different each other, he/she could

follow different strategies:

(a) Consider interval weights whose extremes are the minimum and maximum weights available

for each criterion (see, for instance, Morais et al., 2014).

(b) Same procedure as the previous one but where outliers have been previously eliminated. For

that, the DM has to choose a method to detect outliers.8 Usual procedures to detect outliers in

the case of one-dimensional data are the boxplot rule (Tukey, 1977) and the MAD–median rule

(see, for instance, Iglewicz & Hoaglin, 1993, Wilcox, 2012, and Leys et al., 2013).

(c) Consider interval weights whose extremes are the first and the third quartile of the weights

available for each criterion.

(d) Consider interval weights of the form
[
µ j − kσ j, µ j + kσ j

]
, where µ j is the mean of the weights

for criterion j, σ j is their standard deviation, and k > 0. Notice that
∑n

j=1 µ j = 1 and, by

Chebyshev’s inequality (also called the Bienaymé-Chebyshev inequality), we know that at least

1 − 1/k2 of the weights are within k standard deviations of the mean; that is,

P(|X − µ j| ≤ kσ j) ≥ 1 −
1
k2 .

7In this case Z∗i ≥ Z∗j for any value of r ∈ [0, 1].
8There is an abundant literature on this topic; see, for instance, Iglewicz & Hoaglin, 1993, Barnett & Lewis, 1994, Wilcox &

Keselman, 2003, Seo, 2006, and Aggarwal, 2017.
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For instance, at least 50% of the weights fall in the interval
[
µ j −

√
2σ j, µ j +

√
2σ j

]
, 66% in

the interval
[
µ j −

√
3σ j, µ j +

√
3σ j

]
, 75% in the interval

[
µ j − 2σ j, µ j + 2σ j

]
, and 88% in the

interval
[
µ j − 3σ j, µ j + 3σ j

]
.9 Notice that k =

√
3 is very interesting since it maximizes the

ratio between the minimum number of weights inside the interval and the length of it: It is easy

to see that the function

f (k) =
1 − 1

k2

2kσ j
=

1
2σ j

k2 − 1
k3

has a maximum in k =
√

3. As discussed above, the choice of excessively large intervals does

not seem the most suitable in most cases. Hence, values of k located between 1 and 2 seem the

most appropriate.

Notice also that to avoid that the extreme of the intervals take values less than zero or greater

than one, we have to use the expression

[
max

(
0, µ j − kσ j

)
,min

(
1, µ j + kσ j

)]
.

It is easy to check that the constraints µ j − kσ j ≥ 0 and µ j + kσ j ≤ 1 are satisfied if and only if

k ≤ min(µ j, 1 − µ j)/σ j. Therefore, when k ≤ min j∈N min(µ j, 1 − µ j)/σ j, the intervals are of the

form
[
µ j − kσ j, µ j + kσ j

]
. In this case the following corollary shows the score obtained by the

alternatives.10

Corollary 4. Suppose the DM has several weight vectors where at least two of them are different

each other, and let µ j and σ j be the mean and the standard deviation of the weights for criterion

j, j ∈ N, and let k > 0 such that k ≤ min(µ j, 1 − µ j)/σ j for all j ∈ N. If we consider Model (1)

with a j = µ j − kσ j and b j = µ j + kσ j for all j ∈ N, then

Z∗i =

n∑
j=1

zi jµ j + k
n∑

j=1

∣∣∣zi j − zi[p]
∣∣∣σ j,

where [·] is a permutation of N such that zi[1] ≥ zi[2] ≥ · · · ≥ zi[n] and p ∈ N satisfies

p−1∑
j=1

σ[ j] < 0.5
n∑

j=1

σ j ≤

p∑
j=1

σ[ j].

9Note that in the case of weights with a normal distribution the percentages increase considerably. For instance, P(|X − µ j| ≤

σ j) ≈ 0.6827, P(|X − µ j| ≤ 2σ j) ≈ 0.9545, and P(|X − µ j| ≤ 3σ j) ≈ 0.9973.
10We omit the proof because it is similar to that of Corollary 2. In the same way, the comments made after Corollary 2 about the

score Z∗i are also valid for the expression obtained in Corollary 4 changing the role of r by k.
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It is important to emphasize that, in addition to the four methods previously mentioned, the DM

could consider others depending on the characteristics of the problem. Notice also that the constraints∑n
j=1 a j < 1 <

∑n
j=1 b j are satisfied in the first and fourth cases11 but in the second and third ones

they are not guaranteed. For instance, suppose that in a MADM problem with five attributes, a DM

has five potential weights vector, as listed in Table 5.

Table 5: Weights vector for five criteria.

C1 C2 C3 C4 C5

0.96 0.01 0.01 0.01 0.01

0.01 0.96 0.01 0.01 0.01

0.01 0.01 0.96 0.01 0.01

0.01 0.01 0.01 0.96 0.01

0.01 0.01 0.01 0.01 0.96

It is easy to check that, in all criteria, the value 0.96 is an outlier and the third quartile is the value 0.01.

Therefore, by using the second and third methods we have
∑5

j=1 b j = 0.05 < 1 and, consequently, the

feasible set of Model (1) is empty.

To illustrate the above procedures, we consider an example given by Morais et al. (2014), where the

authors use the Revised Simos’ procedure (see Figueira & Roy, 2002) to obtain the weights of 6

criteria for 5 DMs (see Table 5).

Table 6: Weights given by the DMs (Table 5 in Morais et al., 2014).

C1 C2 C3 C4 C5 C6

DM1 0.34 0.20 0.09 0.09 0.14 0.14

DM2 0.10 0.10 0.15 0.15 0.25 0.25

DM3 0.17 0.17 0.22 0.26 0.05 0.13

DM4 0.24 0.17 0.09 0.24 0.09 0.17

DM5 0.15 0.15 0.15 0.15 0.15 0.25

11Remember that
∑n

j=1 µ j = 1.
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Figure 1: Boxplot of the weights of Table 6.
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Table 7 shows the interval weights obtained by using the following procedures: all weights (P1), all

weights minus outliers12 (P2), the first and the third quartile (P3), and intervals of the form
[
µ j −

kσ j, µ j + kσ j
]
, with k = 1,

√
2,
√

3, and 2 (P4, P5, P6, and P7, respectively).13

Note that the standard deviation of the weights is relatively large in some criteria (for instance, σ1 =

0.083 and σ5 = 0.067).14 This causes the length of the intervals of the form
[
µ j − kσ j, µ j + kσ j

]
to

be relatively large. Notice also that the intervals obtained with k =
√

3 contain all the weights.

3. Application to an MADM problem

The MADM problem that we consider is taken from Mulliner et al. (2016), where several MADM

methods were applied to rank 10 Liverpool housing wards by using 20 criteria. Table 1 in Mulliner et al.

(2016) collects the weights used and the values obtained when evaluating each alternative with respect to the

different criteria. Mulliner et al. (2016) consider the SAW method (called weighted sum model (WSM) in

12The outliers are detected using the boxplot rule (see Figure 1).
13The values corresponding to P4, P5, P6, and P7 have been rounded to two decimal places.
14The coefficients of variation of these criteria are CV1 = 0.416 and CV5 = 0.496.
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Table 7: Interval weights using different procedures.

C1 C2 C3 C4 C5 C6

P1 [0.10, 0.34] [0.10, 0.20] [0.09, 0.22] [0.09, 0.26] [0.05, 0.25] [0.13, 0.25]

P2 [0.10, 0.34] [0.15, 0.20] [0.09, 0.22] [0.09, 0.26] [0.05, 0.15] [0.13, 0.25]

P3 [0.15, 0.24] [0.15, 0.17] [0.09, 0.15] [0.15, 0.24] [0.09, 0.15] [0.14, 0.25]

P4 [0.12, 0.28] [0.12, 0.19] [0.09, 0.19] [0.11, 0.24] [0.07, 0.20] [0.14, 0.24]

P5 [0.08, 0.32] [0.11, 0.20] [0.07, 0.21] [0.09, 0.27] [0.04, 0.23] [0.11, 0.26]

P6 [0.06, 0.34] [0.10, 0.22] [0.06, 0.22] [0.07, 0.29] [0.02, 0.25] [0.10, 0.28]

P7 [0.03, 0.37] [0.09, 0.22] [0.04, 0.24] [0.05, 0.30] [0, 0.27] [0.08, 0.29]

their paper) with the following normalization. Firstly, they transform cost criteria into benefit ones through

xmax
j + xmin

j − xi j, where xmax
j and xmin

j are, respectively, the maximum and the minimum criterion value;

that is, xmax
j = maxi xi j and xmin

j = mini xi j. After that, all data correspond to benefit criteria and values are

normalized through

zi j =
xi j∑m

i=1 xi j
.

However, it is important to emphasize that this normalization may cause a rank reversal problem (see Belton

& Gear, 1983; Triantaphyllou, 2000, pp. 11-12 in the context of AHPand Mufazzal & Muzakki, 2018 for a

discussion of this problem). Another normalization commonly used in MADM problems is

zi j =
xi j − xmin

j

xmax
j − xmin

j

,

for benefit criteria, and

zi j =
xmax

j − xi j

xmax
j − xmin

j

,

for cost criteria. Nevertheless, in the example taken from Mulliner et al. (2016) there are criteria in which

all the values are the same (see criteria 3, 12, 15, and 19 in Table 1 of Mulliner et al., 2016). Thus, this

normalization cannot be used in these criteria. The normalization that we consider is that given by

zi j =
xi j

xmax
j

,

13



for benefit criteria, and

zi j =
xmax

j + xmin
j − xi j

xmax
j

= 1 −
xi j − xmin

j

xmax
j

,

for cost criteria (see Norm (9) and Norm (12) in Jahan & Edwards, 2015).15 The values obtained with this

normalization are shown in Table 8.

15Notice that this normalization is the one used by Mulliner et al., 2016 in the method they call Revised AHP 1. So, the scores

obtained when the authors apply this method are the ones that we have obtained with the SAW method (see Table 3 in Mulliner

et al., 2016 and Table 9 in this paper).
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Table 8: Normalized values of data of Table 1 in Mulliner et al. (2016).

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15 C16 C17 C18 C19 C20

A1 1 1 1 0.929 0.667 0.367 0.289 1 0.667 0.833 1 1 1 1 1 0.517 0.805 0.882 1 0

A2 0.725 0.633 1 0.286 0.333 0.933 1 1 0.5 1 0.333 1 1 0.5 1 1 0.782 0.809 1 0.949

A3 0.765 0.833 1 0.229 0.333 0.767 0.859 1 0.667 0.833 0.667 1 1 0.833 1 0.403 0.769 0.838 1 0.947

A4 0.725 0.7 1 0.586 0.333 0.9 0.985 1 0.833 0.833 0.667 1 0.833 0.833 1 0.946 0.883 0.779 1 0.968

A5 0.686 0.7 1 0.214 0.667 0.9 0.867 1 0.667 0.667 1 1 1 0.667 1 0.579 0.959 0.838 1 1

A6 0.902 0.833 1 0.429 0.667 0.833 0.874 0.667 0.667 0.667 0.333 1 1 0.833 1 0.616 1 0.941 1 0.602

A7 0.745 0.667 1 0.071 1 0.433 0.807 1 0.667 0.5 0.667 1 1 0.667 1 0.691 0.862 0.926 1 0.144

A8 0.98 0.633 1 0.786 1 0.367 0.289 1 0.833 0.833 1 1 1 0.833 1 0.753 0.81 0.971 1 0.04

A9 0.941 0.867 1 0.5 0.333 0.767 0.63 1 0.833 1 0.333 1 1 0.667 1 0.032 0.991 0.897 1 0.364

A10 0.765 0.8 1 1 0.667 1 0.733 1 1 1 1 1 1 0.667 1 0.378 0.922 1 1 0.774

15



The weights used by Mulliner et al. (2016) were determined from the opinion of 337 housing and

planning experts (Mulliner & Maliene, 2012). The experts ranked the criteria from 1 to 10, where 1 meant

“not important at all” and 10 meant “most important”. The mean scores and the variances obtained for each

criterion were the following (Mulliner & Maliene, 2012):

µ′ = (8.7, 8.7, 8, 8, 7.1, 6.5, 6.1, 7.4, 6.8, 6.9, 6.3, 6.6, 6.4, 5.5, 6, 6.1, 7.6, 7.2, 5.8, 6.1),

σ′2 = (2.4, 2.1, 2.6, 2.5, 3.6, 3.7, 4.5, 3.2, 3.6, 3.6, 3.6, 3.7, 3.5, 4.1, 4.1, 4.1, 3.4, 4, 5.2, 4.5).

The final weights µ j were obtained by dividing each mean score µ′j by 137.8, which is the sum of the

mean scores (see Table 1 in Mulliner et al., 2016). Analogously, the standard deviations used in some

intervals, σ j, are obtained by dividing each standard deviation σ′j by 137.8.16

Next we assess the alternatives using the procedure described in the previous section. We consider the

cases where the intervals are of the form
[
µ j(1 − r), µ j(1 + r)

]
and

[
µ j − kσ j, µ j + kσ j

]
. Table 9 lists the

scores of alternatives as functions of r and k (see Corollaries 2 and 4), and Figures 2 and 3 show the graph

of these functions when r ∈ [0, 1] and k ∈ [1, 2].

Table 9: Scores of the alternatives as functions of r and k.

r k

A1 0.81001 + 0.18999 r 0.81001 + 0.05842 k

A2 0.78117 + 0.21091 r 0.78117 + 0.05416 k

A3 0.78159 + 0.16184 r 0.78159 + 0.04342 k

A4 0.83200 + 0.13027 r 0.83200 + 0.03416 k

A5 0.81206 + 0.16971 r 0.81206 + 0.04361 k

A6 0.79366 + 0.16095 r 0.79366 + 0.04427 k

A7 0.74067 + 0.21679 r 0.74067 + 0.05912 k

A8 0.81315 + 0.18156 r 0.81315 + 0.05340 k

A9 0.76820 + 0.21517 r 0.76820 + 0.06325 k

A10 0.88837 + 0.11163 r 0.88837 + 0.03201 k

16Remember that if X is a random variable (or observed data) with mean µX and standard deviation σX , and Y = bX, then

µY = bµX and σY = |b|σX .
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Figure 2: Graphs of the scores of the alternatives when r ∈ [0, 1].
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Remember that the independent terms of both families of polynomials are the scores that the SAW

method gives to the alternatives. Notice also that there is an important difference between both methods in

terms of the size of the slopes.17 This is because we are using different scales for the variables r and k. For

instance, the score obtained by A1 is the same in both methods when k/r = 0.18999/0.05842 = 3.25214,

whereas in the case of A2 is k/r = 0.21091/0.05416 = 3.8942, k/r = 3.72731 in the case of A3, etc.

Regarding the size of the intervals,
[
µ j(1 − r), µ j(1 + r)

]
and

[
µ j − kσ j, µ j + kσ j

]
are the same when

k/r = µ j/σ j (5.616 in the case of C1, 6.0037 in the case of C2, . . . , 2.8756 in the case of C20).

It is interesting to note that Figures 2 and 3 allow us to easily appreciate the behavior of the scores of the

alternatives when r and k vary. For instance, we can see that the use of intervals of the form
[
µ j − kσ j, µ j +

kσ j
]
, with k ∈ [1, 2], provides fairly stable rankings: As can be observed in Figure 3, A1 is always in the

17According to the available information in this example, it seems more convenient to use the intervals of the form
[
µ j−kσ j, µ j +

kσ j
]
. Nevertheless, we also consider those of the form

[
µ j(1− r), µ j(1 + r)

]
in order to analyze the behavior of our model with both

families.

17



Figure 3: Graphs of the scores of the alternatives when k ∈ [1, 2].
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second position, A3 in the ninth position, A4 in the fourth position, A5 in the fifth position, A7 in the tenth

position, A8 in the third position, and A10 in the first position; that is,

A10 � A1 � A8 � A4 � A5 � {A6, A2, A9} � A3 � A7.

Table 10 gathers the rankings of the alternatives obtained with our model for different values of r and

k (r ∈ {0, 0.1, 0.25, 0.5, 0.75, 1}, k ∈
{
1,
√

2,
√

3, 2
}
), and those obtained with the methods used by Mulliner

et al. (2016). It is important to emphasize that the Revised AHP 1 in Mulliner et al. (2016) is the SAW

method with the normalization used in this paper (that is, our model with r = 0 or k = 0). Moreover, in

this example, the Revised AHP 2 method used by the authors gives the same ranking as the Revised AHP 1.

Hence, these methods are represented in Table 10 under the column r = 0.

Notice that the methods obtained with the proposed model by using k =
√

3 and k = 2 (and also r = 0.5

and k =
√

2) provide the same rankings. Moreover, all methods rank A10 in the first position,18 and A7

18When r = 1, A1 and A10 reach the maximum score and tie for the first position. Hence, they are assigned 1.5; that is, the
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Table 10: Ranking of the alternatives for different methods.

WSM WPM TOPSIS COPRAS r k

0 0.10 0.25 0.50 0.75 1 1
√

2
√

3 2

A1 4 10 8 6 5 5 4 2 2 1.5 2 2 2 2

A2 7 6 3 4 8 7 6 6 4 4 7 6 7 7

A3 8 5 7 8 7 8 8 9 10 10 9 9 9 9

A4 2 2 2 2 2 2 2 4 6 7 4 4 4 4

A5 5 3 4 3 4 4 5 5 5 6 5 5 5 5

A6 6 4 5 7 6 6 7 8 8 9 6 8 8 8

A7 10 9 9 10 10 10 10 10 9 8 10 10 10 10

A8 3 7 6 5 3 3 3 3 3 3 3 3 3 3

A9 9 8 10 9 9 9 9 7 7 5 8 7 6 6

A10 1 1 1 1 1 1 1 1 1 1.5 1 1 1 1

is always ordered in the last positions (see more comments on WSM, WPM, TOPSIS, and COPRAS in

Mulliner et al., 2016). Note also the behavior of alternative A1: with some values of r and k, it achieves the

second position (and even ties in the first position when r = 1) whereas it is in last position when the WPM

method is applied. This is because the score of A1 in criterion C20 is 0 (and the WPM method is based on

the geometric weighted mean) and there are ten criteria in which A1 achieves the maximum score (which

benefits A1 in our model of variable weights).

The similarity between the rankings can be best appreciated when we use the Spearman’s and Kendall’s

correlation coefficients (see Table 11).19 For instance, we can see that Spearman’s correlation coefficients

between the methods that use the intervals of the form
[
µ j − kσ j, µ j + kσ j

]
(with k ∈

{
1,
√

2,
√

3, 2
}
) are

very high, always greater than 0.95 (0.86 in the case of Kendall’s correlation coefficients).

average of the ranks 1 and 2.
19We use both coefficients because there is no clear consensus in the literature on which of the two is more convenient. Note

that Kendall’s coefficients are, in absolute value, smaller than or equal to Spearman’s coefficients. Notice also that Mulliner et al.

(2016) calculate the Pearson’s correlation coefficients, so their results do not match ours (see Table 5 in Mulliner et al., 2016).
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Table 11: Spearman’s (in blue) and Kendall’s (in red) correlation coefficients calculated from data on Table 10.

WSM WPM TOPSIS COPRAS r = 0 r = 0.10 r = 0.25 r = 0.50 r = 0.75 r = 1 k = 1 k =
√

2 k =
√

3 k = 2

WSM 1 0.564 0.721 0.867 0.976 0.988 0.988 0.891 0.745 0.547 0.939 0.891 0.867 0.867

WPM 0.511 1 0.855 0.733 0.661 0.648 0.539 0.261 0.115 −0.134 0.333 0.261 0.236 0.236

TOPSIS 0.556 0.689 1 0.915 0.721 0.77 0.745 0.503 0.455 0.195 0.539 0.503 0.418 0.418

COPRAS 0.778 0.644 0.778 1 0.855 0.903 0.903 0.77 0.697 0.474 0.758 0.77 0.709 0.709

r = 0 0.911 0.6 0.556 0.778 1 0.988 0.952 0.818 0.636 0.419 0.879 0.818 0.806 0.806

r = 0.10 0.956 0.556 0.6 0.822 0.956 1 0.976 0.855 0.709 0.492 0.903 0.855 0.83 0.83

r = 0.25 0.956 0.467 0.6 0.822 0.867 0.911 1 0.915 0.794 0.608 0.927 0.915 0.879 0.879

r = 0.50 0.733 0.244 0.378 0.6 0.644 0.689 0.778 1 0.939 0.851 0.964 1 0.988 0.988

r = 0.75 0.556 0.067 0.289 0.422 0.467 0.511 0.6 0.822 1 0.948 0.879 0.939 0.903 0.903

r = 1 0.405 -0.09 0.135 0.27 0.315 0.36 0.449 0.674 0.854 1 0.742 0.851 0.839 0.839

k = 1 0.822 0.333 0.378 0.6 0.733 0.778 0.778 0.911 0.733 0.584 1 0.964 0.952 0.952

k =
√

2 0.733 0.244 0.378 0.6 0.644 0.689 0.778 1 0.822 0.674 0.911 1 0.988 0.988

k =
√

3 0.689 0.2 0.333 0.556 0.6 0.644 0.733 0.956 0.778 0.629 0.867 0.956 1 1

k = 2 0.689 0.2 0.333 0.556 0.6 0.644 0.733 0.956 0.778 0.629 0.867 0.956 1 1

20



Notice also that the Spearman’s and Kendall’s correlation coefficients between WPM and our method

with r = 1 (that is, with intervals of the form
[
0, 2µ j

]
) are both negative, −0.134 and −0.09, respectively.

This is due to the different philosophy on which both methods are based: WPM penalizes alternatives with

low scores in some criteria whereas our model allows the low scores of some criteria to be taken less into

account.

4. Concluding remarks

There are a great variety of methods in the literature to determine the weights of the attributes in MADM

problems. Some of them use the information collected in the decision matrix but, as we have seen in this

paper, this methodology may have undesirable effects in some cases. Other methods use the information

provided by the DM but sometimes, due to lack of information or knowledge, he/she may not be willing

or able to provide exact values of the weights. One of the simplest ways to allow the variability of the

weights is through intervals. For this reason, in this paper we have proposed a model where the score of

each alternative is the maximum values that the weighted mean can reach when the weights can take any

value from certain intervals (the maxmax criterion). Moreover, we have given closed-form expressions for

the scores obtained by the alternatives and we have suggested several ways to build the interval weights

required in our model. It is worth noting that the proposed model is easy to understand and apply, and it

takes into account the importance that the DM gives to the criteria but also the good performance that some

alternatives may have in certain criteria. We have applied this new methodology to an MADM problem

taken from Mulliner et al. (2016), and we have seen that, in this example, the use of intervals of the form[
µ j − kσ j, µ j + kσ j

]
(with k = 1,

√
2,
√

3, and 2) provides fairly stable rankings. Lastly, it is worth pointing

out that different methodologies than the one used in this paper (such as the maxmin or Hurwicz criteria)

could be studied in future research.
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Appendix A. Proofs

Proof of Theorem 1. Consider in Model (1) the following change of variables:

s j = w j − a j, j = 1, . . . , n.
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Then we can write

Z∗i = max
n∑

j=1

zi js j +

n∑
j=1

zi ja j,

s.t. 0 ≤ s j ≤ b j − a j, j = 1, . . . , n,
n∑

j=1

s j = 1 −
n∑

j=1

a j.

(A.1)

Notice now that Model (A.1) is equivalent to

Ẑ∗i = max
n∑

j=1

zi js j,

s.t. 0 ≤ s j ≤ d j, j = 1, . . . , n,
n∑

j=1

s j = D,

(A.2)

where d j = b j − a j, j = 1, . . . , n, and D = 1 −
∑n

j=1 a j. Let [·] be a permutation of N such that zi[1] ≥ zi[2] ≥

· · · ≥ zi[n]; and let p ∈ N such that

p−1∑
l=1

d[l] < D ≤
p∑

l=1

d[l].

Note that p always exists because
∑n

j=1 a j < 1 <
∑n

j=1 b j and, consequently, 0 < D <
∑n

j=1 d j. Then, it is

easy to check that a solution of Model (A.2) is20

s[ j] =


d[ j], if j < p,

D −
∑p−1

l=1 d[l], if j = p,

0, if j > p.

Therefore,

Ẑ∗i =

p−1∑
j=1

zi[ j]d[ j] + zi[p]

D −
p−1∑
j=1

d[ j]

 ,
20It is worth noting that if all elements zi j, j = 1, . . . , n, are different then the permutation [·] is unique and, consequently, the

solution is also unique. However, if the permutation [·] is not unique, there may be several optimal solutions.
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and, consequently,

Z∗i =

p−1∑
j=1

zi[ j]
(
b[ j] − a[ j]

)
+ zi[p]

1 − n∑
j=1

a[ j] −

p−1∑
j=1

(
b[ j] − a[ j]

) +

n∑
j=1

zi[ j]a[ j]

=

p−1∑
j=1

(
zi[ j] − zi[p]

)
b[ j] + zi[p] −

p−1∑
j=1

(
zi[ j] − zi[p]

)
a[ j] +

n∑
j=1

(
zi[ j] − zi[p]

)
a[ j]

=

p−1∑
j=1

(
zi[ j] − zi[p]

)
b[ j] + zi[p] −

n∑
j=p+1

(
zi[p] − zi[ j]

)
a[ j].

Proof of Corollary 1. Consider Model (1) with a j = 0 and b j = 1 for all j ∈ N. Notice that, in the proof

of Theorem 1, we have D = 1 and d j = 1 for all j ∈ N. Therefore p = 1 and, since a j = 0 for all j ∈ N, we

get

Z∗i = max
j=1,...,n

zi j.

Proof of Corollary 2. From Theorem 1 we know that

Z∗i =

p−1∑
j=1

(
zi[ j] − zi[p]

)
w[ j] + r

p−1∑
j=1

(
zi[ j] − zi[p]

)
w[ j] + zi[p]

−

n∑
j=p+1

(
zi[p] − zi[ j]

)
w[ j] + r

n∑
j=p+1

(
zi[p] − zi[ j]

)
w[ j]

=

p−1∑
j=1

zi[ j]w[ j] +

n∑
j=p+1

zi[ j]w[ j] + zi[p]

1 − p−1∑
j=1

w[ j] −

n∑
j=p+1

w[ j]

 + r
n∑

j=1

∣∣∣zi j − zi[p]
∣∣∣ w j

=

n∑
j=1

zi jw j + r
n∑

j=1

∣∣∣zi j − zi[p]
∣∣∣ w j,

where [·] is a permutation of N such that zi[1] ≥ zi[2] ≥ · · · ≥ zi[n] and p ∈ N satisfies

p−1∑
j=1

2rw[ j] < r ≤
p∑

j=1

2rw[ j];

that is,

p−1∑
j=1

w[ j] < 0.5 ≤
p∑

j=1

w[ j].

References

Aggarwal, C. C. (2017). Outlier Analysis. (2nd ed.). Cham: Springer.

23



Arbel, A. (1989). Approximate articulation of preference and priority derivation. European Journal of Operational Research, 43,

317–326.

Barnett, V., & Lewis, T. (1994). Outliers in Statistical Data. (3rd ed.). Chichester: John Wiley & Sons.

Barron, F. H. (1992). Selecting a best multiattribute alternative with partial information about attribute weights. Acta Psychologica,

80, 91–103.

Belton, V., & Gear, T. (1983). On a short-coming of Saaty’s method of analytic hierarchies. Omega, 11, 228–230.

Chin, K.-S., Fu, C., & Wang, Y. (2015). A method of determining attribute weights in evidential reasoning approach based on

incompatibility among attributes. Computers & Industrial Engineering, 87, 150–162.

Cook, W. D., & Kress, M. (1990). A data envelopment model for aggregating preference rankings. Management Science, 36,

1302–1310.

Danielson, M., & Ekenberg, L. (2014). Rank ordering methods for multi-criteria decisions. In P. Zaraté, G. E. Kersten, & J. E.

Hernández (Eds.), Group Decision and Negotiation: A Process-Oriented View, GDN 2014 (pp. 128–135). Cham: Springer

volume 180 of Lecture Notes in Business Information Processing.

de Almeida, A. T., de Almeida, J. A., Costa, A. P. C. S., & de Almeida-Filho, A. T. (2016). A new method for elicitation of criteria

weights in additive models: Flexible and interactive tradeoff. European Journal of Operational Research, 250, 179–191.

Deng, H., Yeh, C.-H., & Willis, R. J. (2000). Inter-company comparison using modified TOPSIS with objective weights. Computers

& Operations Research, 27, 963–973.

Edwards, W., & Barron, F. H. (1994). Smarts and smarter: Improved simple methods for multiattribute utility measurement.

Organizational Behavior and Human Decision Processes, 60, 306–325.

Figueira, J., & Roy, B. (2002). Determining the weights of criteria in the ELECTRE type methods with a revised Simos’ procedure.

European Journal of Operational Research, 139, 317–326. EURO XVI: O.R. for Innovation and Quality of Life.

Fu, C., Zhou, K., & Xue, M. (2018). Fair framework for multiple criteria decision making. Computers & Industrial Engineering,

124, 379–392.

Greco, S., Ehrgott, M., & Figueira, J. R. (Eds.) (2016). Multiple Criteria Decision Analysis: State of the Art Surveys volume 233

of International Series in Operations Research & Management Science. (2nd ed.). New York: Springer.

Hwang, C.-L., & Yoon, K. (1981). Multiple Attribute Decision Making: Methods and Applications. Berlin: Springer-Verlag.

Iglewicz, B., & Hoaglin, D. (1993). How to Detect and Handle Outliers. Milwaukee, WI: ASQC Quality Press.

Jacquet-Lagrèze, E., & Siskos, J. (1982). Assessing a set of additive utility functions for multicriteria decision-making, the UTA

method. European Journal of Operational Research, 10, 151–164.

Jahan, A., & Edwards, K. L. (2015). A state-of-the-art survey on the influence of normalization techniques in ranking: Improving

the materials selection process in engineering design. Materials and Design, 65, 335–342.

Kao, C. (2010). Weight determination for consistently ranking alternatives in multiple criteria decision analysis. Applied Mathe-

matical Modelling, 34, 1779–1787.

Leys, C., Ley, C., Klein, O., Bernard, P., & Licata, L. (2013). Detecting outliers: Do not use standard deviation around the mean,

use absolute deviation around the median. Journal of Experimental Social Psychology, 49, 764–766.

Liu, Y., Dong, Y., Liang, H., Chiclana, F., & Herrera-Viedma, E. (2018). Multiple attribute strategic weight manipulation with

minimum cost in a group decision making context with interval attribute weights information. IEEE Transactions on Systems,

Man, and Cybernetics: Systems, in press.

24



Liu, Y., Zhang, H., Wu, Y., & Dong, Y. (2019). Ranking range based approach to MADM under incomplete context and its

application in venture investment evaluation. Technological and Economic Development of Economy, in press.

Llamazares, B. (2016). Ranking candidates through convex sequences of variable weights. Group Decision and Negotiation, 25,

567–584.

Llamazares, B. (2017). Aggregating preference rankings using an optimistic-pessimistic approach: Closed-form expressions.

Computers & Industrial Engineering, 110, 109–113.

Llamazares, B., & Peña, T. (2009). Preference aggregation and DEA: An analysis of the methods proposed to discriminate efficient

candidates. European Journal of Operational Research, 197, 714–721.

Llamazares, B., & Peña, T. (2013). Aggregating preferences rankings with variable weights. European Journal of Operational

Research, 230, 348–355.

Malakooti, B. (2000). Ranking and screening multiple criteria alternatives with partial information and use of ordinal and cardinal

strength of preferences. IEEE Transactions on Systems, Man, and Cybernetics—Part A: Systems and Humans, 30, 355–368.

Morais, D. C., de Almeida, A. T., & Figueira, J. R. (2014). A sorting model for group decision making: a case study of water

losses in Brazil. Group Decision and Negotiation, 23, 937–960.

Mufazzal, S., & Muzakki, S. M. (2018). A new multi-criterion decision making (MCDM) method based on proximity indexed

value for minimizing rank reversals. Computers & Industrial Engineering, 119, 427–438.

Mulliner, E., & Maliene, V. (2012). What attributes determine housing affordability? International Journal of Social, Behavioral,

Educational, Economic, Business and Industrial Engineering, 6, 1833 – 1838.

Mulliner, E., Malys, N., & Maliene, V. (2016). Comparative analysis of MCDM methods for the assessment of sustainable housing

affordability. Omega, 59, 146–156.

Mustajoki, J., Hämäläinen, R. P., & Salo, A. (2005). Decision support by interval SMART/SWING—Incorporating imprecision in

the SMART and SWING methods. Decision Sciences, 36, 317–339.

Nardo, M., Saisana, M., Saltelli, A., Tarantola, S., Hoffmann, A., & Giovannini, E. (2008). Handbook on Constructing Composite

Indicators: Methodology and User Guide. OECD Publishing.

Park, K. S., & Kim, S. H. (1997). Tools for interactive multiattribute decisionmaking with incompletely identified information.

European Journal of Operational Research, 98, 111–123.

Rezaei, J. (2016). Best-worst multi-criteria decision-making method: Some properties and a linear model. Omega, 64, 126–130.

Roszkowska, E. (2013). Rank ordering criteria weighting methods – a comparative overview. Optimum. Studia Ekonomiczne,

5(65), 14–33.

Salo, A., & Hämäläinen, R. P. (1992). Preference assessment by imprecise ratio statements. Operations Research, 40, 1053–1061.

Salo, A., & Hämäläinen, R. P. (1995). Preference programming through approximate ratio comparisons. European Journal of

Operational Research, 82, 458–475.

Salo, A., & Punkka, A. (2005). Rank inclusion in criteria hierarchies. European Journal of Operational Research, 163, 338–356.

Seo, S. (2006). A Review and Comparison of Methods for Detecting Outliers in Univariate Data Sets. Master’s thesis University

of Pittsburgh.

Triantaphyllou, E. (2000). Multi-criteria Decision Making Methods: A Comparative Study volume 44 of Applied Optimization.

Boston: Springer.

Tukey, J. W. (1977). Exploratory Data Analysis. Reading, MA: Addison-Wesley.

25



Wang, Y.-M., & Luo, Y. (2010). Integration of correlations with standard deviations for determining attribute weights in multiple

attribute decision making. Mathematical and Computer Modelling, 51, 1–12.

Weber, M. (1987). Decision making with incomplete information. European Journal of Operational Research, 28, 44–57.

Wilcox, R. R. (2012). Modern Statistics for the Social and Behavioral Sciences: A Practical Introduction. Boca Raton, FL: CRC

Press.

Wilcox, R. R., & Keselman, H. J. (2003). Modern robust data analysis methods: Measures of central tendency. Psychological

Methods, 8, 254–274.

Yu, G., Fei, W., & Li, D. (2019). A compromise-typed variable weight decision method for hybrid multiattribute decision making.

IEEE Transactions on Fuzzy Systems, 27, 861–872.

Zavadskas, E. K., & Turskis, Z. (2011). Multiple criteria decision making (MCDM) methods in economics: an overview. Techno-

logical and Economic Development of Economy, 17, 397–427.

Zeleny, M. (1982). Multiple Criteria Decision Making. New York: McGraw-Hill.

26


