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On the relationship between the Crescent Method
and SUOWA operators

Bonifacio Llamazares

Abstract—Different families of functions have been proposed
in the literature with the purpose of simultaneously generalizing
weighted means and OWA operators (see, for instance, WOWA
and SUOWA operators). Recently, Jin, Mesiar, and Yager [L. Jin,
R. Mesiar, and R. R. Yager, Melting probability measure with
OWA operator to generate fuzzy measure: the Crescent Method,
IEEE Transactions on Fuzzy Systems, in press] have introduced
in the literature a new procedure called The Crescent Method
to melt additive capacities with those of OWA operators. The
main aim of this paper is to establish a relationship between the
Crescent Method and SUOWA operators. From this relationship
we give closed-form expressions for some well-known indices such
as the Shapley values, the veto and favor indices, and the k-
conjunctiveness and k-disjunctiveness indices.

Index Terms—The Crescent Method, SUOWA operators, OWA
operators, weighted means, Choquet integral.

I. INTRODUCTION

Choquet integral [1] has become an important tool in some
scientific fields due to its versatility, simplicity and good
properties. Two of the best-known specific cases of Choquet
integral are the weighted means and the ordered weighted
averaging (OWA) operators [2]. Due to the importance of both
families of functions, an interesting subject in this field is
the construction of functions that allow us to simultaneously
combine weighted means and OWA operators. With this
purpose, several families of functions have been introduced
in the literature (see, for instance, [3]–[6], and [7], [8] for
an analysis of some of them). Among them, the weighted
ordered weighted averaging (WOWA) operators [3] and the
semiuninorm-based ordered weighted averaging (SUOWA)
operators [4] stand out because they can be expressed through
Choquet integrals with respect to known normalized capacities
(a comparative analysis on the behavior of both families of
functions has been carried out in [9]). It is worth noting
that SUOWA operators have two important advantages over
WOWA operators. On the one hand, for some specific cases of
SUOWA operators it is possible to get closed-form expressions
of some indices such as the orness degree, the Shapley value,
the veto and favor indices, and the k-conjunctiveness and k-
disjunctiveness indices (on the definition and properties of
these indices see, for instance, [10]). On the other hand, some
particular cases of SUOWA operators range between two order
statistics (thus discarding extreme values). A summary of the
main properties of SUOWA operators can be found in [11].
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Recently, a new procedure has been introduced in the litera-
ture to melt additive capacities with those of OWA operators:
The Crescent Method [12]. In this method, the capacity is
obtained as a convex combination (using for this the weighting
vector p) of n previously constructed capacities.

In this paper we establish a relationship between the Cres-
cent Method and SUOWA operators, and we show that the
capacity obtained with the Crescent Method can be expressed
with one, or the dual of one, obtained in the context of
SUOWA operators. This fact allows that some results already
known for SUOWA operators can be applied to the Crescent
Method. Specifically, we give some conditions on the weight-
ing vectors that allow us to get capacities, and we show closed-
form expressions of some indices (such as the Shapley value,
the veto and favor indices, and the k-conjunctiveness and k-
disjunctiveness indices) in those cases.

The remainder of the paper is organized as follows. In
Section II we recall basic concepts on SUOWA operators. In
Section III we remember the Crescent Method and establish
the relationship between this method and SUOWA operators.
Moreover, by using this relationship, we show closed-form
expressions of some indices for the capacities obtained with
the Crescent Method. Finally, some concluding remarks are
provided in Section IV.

II. BASICS ON SUOWA OPERATORS

The following notation will be used throughout the paper:
N denotes the set {1, . . . , n}, |A| and Ac denote, respectively,
the cardinality and the complement of a subset A of N , η
is the tuple (1/n, . . . , 1/n) ∈ Rn, and, for each k ∈ N ,
ek denotes the vector with 1 in the kth coordinate and 0
elsewhere. Vectors are denoted in bold, and given x ∈ Rn,
[·] and (·) denote permutations such that x[1] ≥ · · · ≥ x[n] and
x(1) ≤ · · · ≤ x(n).

SUOWA operators (and also the Crescent Method) are
specific cases of Choquet integrals (on this subject, see,
among others, [1], [10], [13]), which are constructed by using
normalized capacities. A game υ on N is a set function,
υ : 2N −→ R satisfying υ(∅) = 0. A monotonic game is
called a capacity, and a capacity µ is normalized if µ(N) = 1.

The monotonic cover (see [14], [15]) of a game υ is the set
function υ̂ given by

υ̂(A) = max
B⊆A

υ(B).

By construction υ̂ is a capacity on N , and υ̂ = υ when υ is a
capacity. Moreover, υ̂ is a normalized capacity when υ(N) =
1 and υ(A) ≤ 1 for all A ⊆ N .
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The Choquet integral with respect to a normalized capacity
µ is the function Cµ : Rn −→ R given by

Cµ(x) =
n∑
i=1

µ(A[i])
(
x[i] − x[i+1]

)
,

where A[i] = {[1], . . . , [i]}, and we adopt the convention that
x[n+1] = 0. Alternatively, the Choquet integral can be also
expressed as

Cµ(x) =
n∑
i=1

(
µ(A[i])− µ(A[i−1])

)
x[i],

where we use the convention A[0] = ∅.
The best-known specific cases of Choquet integral are the

weighted means and the OWA operators, which are defined by
using weighting vectors.1 The weighted mean Mp associated
with a weighting vector p is the Choquet integral with respect
to the normalized capacity µp(A) =

∑
i∈A pi; that is,

Mp(x) =

n∑
i=1

pixi.

For its part, the OWA operator Ow associated with a weighting
vectorw is the Choquet integral with respect to the normalized
capacity µ|w|(A) =

∑|A|
i=1 wi; that is,

Ow(x) =

n∑
i=1

wix[i].

Specific cases of OWA operators are the order statistics: the
kth order statistic OSk(x) = x(k) is the OWA operator
associated with the vector en−k+1; equivalently, Oek =
OSn−k+1. Nondecreasing (w1 ≤ · · · ≤ wn) and nonincreasing
(w1 ≥ · · · ≥ wn) weighting vectors generate some well-known
families of OWA operators [16].

The dual of a game υ is the game defined by

υ(A) = 1− υ(Ac) (A ⊆ N).

Notice that the dual of a normalized capacity is also a
normalized capacity. In the case of OWA operators, the dual
of µ|w|, µ|w|, is given by µ|w|, where w is the dual of w; that
is, w = (wn, wn−1, . . . , w1) (equivalently, wi = wn+1−i).

The concept of orness was proposed by Yager in the analysis
of OWA operators [2] and it was generalized by Marichal
to the case of Choquet integrals [17]. If µ is a normalized
capacity on N , the orness degree of µ is

orness(µ) =
1

n− 1

n−1∑
t=1

1(
n
t

) ∑
T⊆N
|T |=t

µ(T ).

In the case of capacities associated with OWA operators, we
have

orness(µ|w|) =
1

n− 1

n∑
i=1

(n− i)wi.

Semiuninorms [18] play a fundamental role in the definition
of SUOWA operators. A semiuninorm is a nondecreasing
binary operation U : [0, 1]2 −→ [0, 1] that has a neutral

1A weighting vector is a vector q ∈ [0, 1]n such that
∑n

i=1 qi = 1.

element. The semiuninorms used in the definition of SUOWA
operators have 1/n as neutral element and they have to belong
to the following subset (see [4]):

Ũ1/n =
{
U ∈ U1/n | U(1/k, 1/k) ≤ 1/k for all k ∈ N

}
,

where U1/n denotes the set of semiuninorms with neutral
element 1/n.

SUOWA operators were introduced in [4] and, since then,
several papers have been published concerning their properties.
For instance, in [19] it is shown that when n = 2 any
Choquet integral with respect to a normalized capacity can
be written as a SUOWA operator (see [20] for a graphical
interpretation of the Choquet integral when n = 2). In [21]
several continuous semiuninorms were introduced by using
ordinal sums of aggregation operators (on this topic, see [22]).
In [23], closed-form expressions of the orness degree [17],
the Shapley value [24], [25], and the veto and favor indices
[17], [25] were given for some specific cases of SUOWA
operators. In [16] some SUOWA operators are generated by
using unimodal weighting vectors (on unimodal sequences
of real numbers see, for instance, [26]). The analysis of the
conjunctive/disjunctive character of some specific cases of
SUOWA operators has been carried out in [27]. Finally, a
generalization of the Winsorized means [28], [29] through
SUOWA operators has been introduced in [30].

Definition 1: Let p and w be two weighting vectors and let
U ∈ Ũ1/n.

1) The game associated with p, w and U is the set function
υUp,w : 2N −→ R defined by

υUp,w(A) = |A|U
(
µp(A)

|A|
,
µ|w|(A)

|A|

)
= |A|U

(∑
i∈A pi

|A|
,

∑|A|
i=1 wi
|A|

)
,

if A 6= ∅, and υUp,w(∅) = 0.
2) υ̂Up,w, the monotonic cover of the game υUp,w, will be

called the capacity associated with p, w and U .
3) The SUOWA operator associated with p,w and U is the

Choquet integral with respect to the capacity υ̂Up,w.

By construction, SUOWA operators allow us to recover the
weighted mean when w = η and the OWA operator when
p = η; that is, υ̂Up,η = µp and υ̂Uη,w = µ|w| for any U ∈ Ũ1/n.

A continuous semiuninorm of special interest for its rela-
tionship with the Crescent Method is the following [21]:

UP̃ (x, y) =

{
max(x, y) if (x, y) ∈ (1/n, 1]2,

nxy otherwise.

Given a nonempty subset A of N , we get

υ
UP̃
p,w(A) =

n

|A|

(∑
i∈A

pi

) |A|∑
i=1

wi

, (1)

whenever µ|w|(A) =
∑|A|
i=1 wi ≤ |A|/n. Notice that expres-

sion (1) is also valid for any semiuninorm U ∈ Ũ1/n such that
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U(x, y) = nxy for all y ≤ 1/n; that is, if

Ũ1/n
P =

{
U ∈ Ũ1/n | U(x, y) = nxy for all y ≤ 1/n

}
,

and U ∈ Ũ1/n
P , then

υUp,w(A) =
n

|A|

(∑
i∈A

pi

) |A|∑
i=1

wi

 (2)

for any nonempty subset A of N such that
∑|A|
i=1 wi ≤ |A|/n.

Obviously, when w satisfies that
∑j
i=1 wi ≤ j/n for all

j ∈ N the game υUP̃
p,w is given by

υ
UP̃
p,w(A) =

n

|A|

(∑
i∈A

pi

) |A|∑
i=1

wi

,
whenever A 6= ∅, but it does not have to be a capacity [23].
However, we can guarantee that it is a capacity when w is a
nondecreasing weighting vector [23] or satisfies the condition
given in Proposition 2, which has been given under a different
formulation in [11, Proposition 21]. To see the equivalence
between both formulations, we establish the following result.

Lemma 1: Let w be a weighting vector. Then:
1) The sequence formed with the means of w,(

1
j

∑j
i=1 wi

)n
j=1

, is nondecreasing if and only if
1
j

∑j
i=1 wi ≤ wj+1 for all j ∈ {1, . . . , n− 1}.

2) If 1
j

∑j
i=1 wi ≤ wj+1 for all j ∈ {1, . . . , n − 1}, then

1
j

∑j
i=1 wi ≤

1
n for all j ∈ {1, . . . , n− 1}.

Proof: Let w be a weighting vector.
1) For each j ∈ {1, . . . , n− 1} we have

1

j

j∑
i=1

wi ≤
1

j + 1

j+1∑
i=1

wi ⇔ (j + 1)

j∑
i=1

wi ≤ j
j+1∑
i=1

wi

⇔
j∑
i=1

wi ≤ jwj+1.

2) It is obvious taking into account that, by the first item,
the sequence

(
1
j

∑j
i=1 wi

)n
j=1

is nondecreasing and its

last component is 1/n.

Proposition 1: Let w be a nondecreasing weighting vector.
Then, for any weighting vector p, υUP̃

p,w is a normalized
capacity on N given by

υ
UP̃
p,w(A) =

n

|A|

(∑
i∈A

pi

) |A|∑
i=1

wi

,
whenever A 6= ∅.

Proposition 2: Let w be a weighting vector such that the
sequence

(
1
j

∑j
i=1 wi

)n
j=1

is nondecreasing. Then, for any

weighting vector p, υUP̃
p,w is a normalized capacity on N given

by

υ
UP̃
p,w(A) =

n

|A|

(∑
i∈A

pi

) |A|∑
i=1

wi

,

whenever A 6= ∅.
Note that any nondecreasing weighting vector also satisfies

the condition given in Proposition 2. Therefore, Proposi-
tion 2 allows us to expand the set of weighting vectors for
which we get capacities. For instance, the weighting vector
w = (0.1, 0.3, 0.2, 0.4) is not nondecreasing but υUP̃

p,w is a
normalized capacity on N for any weighting vector p. Notice
again that the above results are also valid for any semiuninorm
U ∈ Ũ1/n

P .

III. THE CRESCENT METHOD AND ITS RELATIONSHIP TO
SUOWA OPERATORS

The Crescent Method [12] has recently been introduced
in the literature with the aim of melting additive capacities
with those of OWA operators. Given two weighting vectors p
and w, the Crescent Method can be implemented through the
following steps:
Step 1: Generate the Crescent extent c′w =

(
c′w(i)

)n−1
i=1

and
the Dual Crescent extent d′w =

(
d′w(i)

)n−1
i=1

given by

c′w(i) =

min

(
i∑

k=1

wk,
i

n

)
i

n

,

d′w(i) =

1−max

(
i∑

k=1

wk,
i

n

)

1− i

n

.

Step 2: For each j ∈ N , construct the game µwj defined by

µwj (A) =

{
c′w(|A|) if j ∈ A,

1− d′w(|A|) if j /∈ A,

for any ∅  A  N , µwj (∅) = 0, and µwj (N) = 1.
Step 3: Construct the game µp,w given by

µp,w =

n∑
j=1

pjµ
w
j .

The Crescent Method has the following properties [12].
Proposition 3: Let w be a nondecreasing or a nonincreasing

weighting vector, or w = ek for some k ∈ N . Then:
1) For each j ∈ N , µwj is a normalized capacity and,

consequently, µp,w is also a normalized capacity.
2) If w = η, then µp,η = µp.
3) If p = η, then µη,w = µ|w|.
4) orness(µp,w) = orness(µ|w|) for any weighting vector
p.

5) If w is a nondecreasing weighting vector, then µp,w ≤
µp for any weighting vector p.2

6) If w is a nonincreasing weighting vector, then µp,w ≥
µp for any weighting vector p.3

2Note that the result is also valid when w satisfies that
∑i

k=1 wk ≤ i/n
for all i ∈ {1, . . . , n− 1}, but in this case we are not guaranteed that µp,w
is a capacity (see the comments after expression (4)).

3A remark similar to the previous one can also be made in this case.
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Next we are going to give explicitly the values that the game
µp,w takes.

Proposition 4: Let w and p be two weighting vectors. If
∅  A  N , then

µp,w(A) =



n

|A|
∑
j∈A

pj

|A|∑
k=1

wk if
|A|∑
k=1

wk ≤
|A|
n
,

1− n

n−|A|
∑
j /∈A

pj

n∑
k=|A|+1

wk if
|A|∑
k=1

wk >
|A|
n
,

or, equivalently,

µp,w(A) =


n

|A|
µp(A)µ|w|(A) if µ|w|(A) ≤

|A|
n
,

µp,w(A) if µ|w|(A) >
|A|
n
.

Proof: If ∅  A  N , then

µp,w(A) =
∑
j∈A

pjµ
w
j (A) +

∑
j /∈A

pjµ
w
j (A)

= c′w(|A|)
∑
j∈A

pj +
(
1− d′w(|A|)

)∑
j /∈A

pj .

We distinguish two cases:

1) If
∑|A|
k=1 wk ≤ |A|/n, then

c′w(|A|) =
n

|A|

|A|∑
k=1

wk, and 1− d′w(|A|) = 0.

Therefore,

µp,w(A) =
n

|A|
∑
j∈A

pj

|A|∑
k=1

wk.

2) If
∑|A|
k=1 wk > |A|/n, then

c′w(|A|) = 1,

and

1− d′w(|A|) = 1− n

n− |A|

n∑
k=|A|+1

wk.

Therefore,

µp,w(A) =
∑
j∈A

pj +

(
1− n

n− |A|

n∑
k=|A|+1

wk

)∑
j /∈A

pj

= 1− n

n− |A|
∑
j /∈A

pj

n∑
k=|A|+1

wk.

Lastly, notice that

|A|∑
k=1

wk >
|A|
n
⇔

n∑
k=|A|+1

wk <
n− |A|
n

,

and, in this case

1− n

n− |A|
∑
j /∈A

pj

n∑
k=|A|+1

wk = 1− µp,w(Ac) = µp,w(A).

According to Proposition 4 and the results shown in Sec-
tion II, the value µp,w(A) can be expressed by means of
υUp,w(A) (where U ∈ Ũ1/n

P ) when µ|w|(A) ≤ |A|/n and
through the dual of υUp,w(A) when µ|w|(A) > |A|/n; that
is,

µp,w(A) =


υUp,w(A) if µ|w|(A) ≤

|A|
n
,

υUp,w(A) if µ|w|(A) >
|A|
n
.

(3)

Notice that when µ|w|(A) = |A|/n then µp,w(A) =∑
j∈A pj = υUp,w(A). So, µp,w can also be expressed as

µp,w(A) =


υUp,w(A) if µ|w|(A) <

|A|
n
,

υUp,w(A) if µ|w|(A) ≥
|A|
n
.

(4)

It is important to point out that µp,w is a game but it is not,
in general, a capacity. For instance, consider the weighting
vectors p = (0.1, 0.2, 0.3, 0.4) and w = (0.2, 0.1, 0.3, 0.4).4

Then,

µp,w({4}) = 0.32 > 0.3 = µp,w({1, 4}).

From [12] we know some families of weighting vectors
for which µp,w is a normalized capacity. Expression (3) is
very relevant because it allows us to expand these sets of
weighting vectors. For instance, expression (3) together with
Proposition 2 allow us to establish the following result.

Corollary 1: Let w be a weighting vector such that the
sequence

(
1
j

∑j
i=1 wi

)n
j=1

is nondecreasing. Then, for any

weighting vector p, µp,w is a normalized capacity on N given
by

µp,w(A) = υUp,w(A) =
n

|A|

(∑
i∈A

pi

) |A|∑
i=1

wi

,
whenever A 6= ∅ and U ∈ Ũ1/n

P .
An analogous result to Corollary 1 can be obtained when

the sequence
(

1
n−j+1

∑n
i=j wi

)n
j=1

is nonincreasing.5

Proposition 5: Let w be a weighting vector such that the
sequence

(
1

n−j+1

∑n
i=j wi

)n
j=1

is nonincreasing. Then, for

any weighting vector p, µp,w is a normalized capacity given
by

µp,w(A) = υUp,w(A) = 1− n

n− |A|
∑
j /∈A

pj

n∑
k=|A|+1

wk,

whenever ∅  A  N and U ∈ Ũ1/n
P .

Proof: Let w be a weighting vector such that the
sequence

(
1

n−j+1

∑n
i=j wi

)n
j=1

is nonincreasing. Since the

first element of the sequence is 1/n, we have 1/n ≥

4Note the similarity of these weighting vectors with those used in Exam-
ple 4 in [12].

5Notice that any nonincreasing weighting vector satisfies this condition.
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(∑n
i=j+1 wi

)
/(n− j) for any j ∈ {1, . . . , n− 1}. But

1

n
≥ 1

n− j

n∑
i=j+1

wi ⇔
n∑

i=j+1

wi ≤
n− j
n

⇔ 1−
n∑

i=j+1

wi ≥ 1− n− j
n

⇔
j∑
i=1

wi ≥
j

n
.

Hence, w satisfies µ|w|(A) ≥ |A|/n for any ∅  A  N
and, by expression (4),

µp,w(A) = υUp,w(A) = 1− n

n− |A|
∑
j /∈A

pj

n∑
k=|A|+1

wk.

Lastly, note that when the sequence
(

1
n−j+1

∑n
i=j wi

)n
j=1

is nonincreasing, the sequence
(

1
j

∑j
i=1 wn+1−i

)n
j=1

=(
1
j

∑j
i=1 wi

)n
j=1

is nondecreasing and, by Corollary 1, υUp,w
is a normalized capacity; and so is its dual, υUp,w.

In the case of weighting vectors associated with order
statistics, we have the following result.

Corollary 2: If w = ek for some k ∈ N , then µp,ek = µ|ek|
for any weighting vector p.

Proof: The proof is immediate taking into account that if
∅  A  N , then

µp,ek(A) =

{
0 if |A| < k,

1 if |A| ≥ k,
= µ|ek|(A).

Therefore, for any weighting vector p, when w = ek for
some k ∈ N , the Choquet integral with respect to the capacity
µp,ek is the OWA operator associated with the vector ek; that
is, the order statistic OSn−k+1.

In addition to the previous results, Corollary 1 and Proposi-
tion 5 also allow us to obtain closed-form expression of some
indices such as the Shapley value [24], the veto and favor
indices [17], and the k-conjunctiveness and k-disjunctiveness
indices [25]. First we are going to define these indices. Given
j ∈ N and µ a normalized capacity on N , the Shapley value,
the veto, and the favor indices of j with respect to µ are
defined by

φ(µ, j) =
1

n

n−1∑
t=0

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

(
µ(T ∪ {j})− µ(T )

)
,

veto(µ, j) = 1− 1

n− 1

n−1∑
t=1

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

µ(T ),

favor(µ, j) =
1

n− 1

n−2∑
t=0

1(
n−1
t

) ∑
T⊆N\{j}
|T |=t

µ(T ∪ {j}).

Given k ∈ N \ {n} and µ a normalized capacity on N , the
k-conjunctiveness and k-disjunctiveness indices with respect
to µ are defined by

conjk(µ) = 1− 1

n− k

n−k∑
t=1

1(
n
t

) ∑
T⊆N
|T |=t

µ(T ),

disjk(µ) =
1

n− k

n−1∑
t=k

1(
n
t

) ∑
T⊆N
|T |=t

µ(T ).

It is well known that the Shapley value is self-dual; that
is, φ(µ, j) = φ(µ, j) for all j ∈ N ; and that orness(µ) =
1− orness(µ). Moreover, we also have (see [10], [17])

veto(µ, j) = favor(µ, j), conjk(µ) = disjk(µ),

favor(µ, j) = veto(µ, j), disjk(µ) = conjk(µ).

Proposition 6: Let w be a weighting vector such that the
sequence

(
1
j

∑j
i=1 wi

)n
j=1

is nondecreasing. Then, for any

weighting vector p, any j ∈ N , and any k ∈ N \ {n}, we
have

φ
(
µp,w, j

)
=

1− pj + (npj − 1)

n∑
i=1

(
n∑
t=i

1

t

)
wi

n− 1
,

veto
(
µp,w, j

)
= 1− n

n− 1
(1− pj) orness(µ|w|),

favor
(
µp,w, j

)
= 1− veto

(
µp,w, j

)
+
nφ
(
µp,w, j

)
− 1

n− 1
,

conjk
(
µp,w

)
= conjk(µ|w|),

disjk
(
µp,w

)
= disjk(µ|w|).

Proof: It is immediate taking into account Corollary 1
and the results given in [23], [27].

Proposition 7: Let w be a weighting vector such that the
sequence

(
1

n−j+1

∑n
i=j wi

)n
j=1

is nonincreasing. Then, for

any weighting vector p, any j ∈ N , and any k ∈ N \{n}, we
have

φ
(
µp,w, j

)
=

1− pj + (npj − 1)

n∑
i=1

(
n∑
t=i

1

t

)
wn+1−i

n− 1
,

favor
(
µp,w, j

)
= 1− n

n− 1
(1− pj)

(
1− orness(µ|w|)

)
,

veto
(
µp,w, j

)
= 1− favor

(
µp,w, j

)
+
nφ
(
µp,w, j

)
− 1

n− 1
,

conjk
(
µp,w

)
= conjk(µ|w|),

disjk
(
µp,w

)
= disjk(µ|w|).

Proof: The proofs are straightforward taking into account
Propositions 5 and 6, and the relationships given before
Proposition 6. For instance, given U ∈ Ũ1/n

P ,

φ
(
µp,w, j

)
= φ

(
υUp,w, j

)
= φ

(
υUp,w, j

)
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=

1− pj + (npj − 1)

n∑
i=1

(
n∑
t=i

1

t

)
wn+1−i

n− 1
.

The expressions for the remaining indices can be obtained in
a similar way.

IV. CONCLUSION

The Crescent Method has recently been introduced in the
literature with the intent of melting additive capacities with
those of OWA operators. In this paper we have established a
relationship between the Crescent Method and the SUOWA
operators. Specifically, we have shown that the capacity ob-
tained with the Crescent Method can be expressed with one, or
the dual of one, obtained in the context of SUOWA operators.
This fact has allowed us to give closed-form expressions of
some well-known indices, which is essential to have a better
knowledge of these capacities.
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