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Abstract

The construction of functions that simultaneously generalize weighted means and OWA operators is an interesting

topic that has received special attention in recent years. Due to the properties they satisfy, one of the most interesting

generalization are SUOWA operators, which have been widely studied in the literature. In a recent paper, a new gener-

alization has been introduced, the Semi-SUOWA operators, which have a close relationship with SUOWA operators.

The main aim of this paper is to analyze the games associated with Semi-SUOWA operators. In this respect, we give

conditions under which we can guarantee the monotonicity of these games. Moreover, we establish some relationships

between some games associated with SUOWA and Semi-SUOWA operators and show the pointwise convergence of

certain games.
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1. Introduction

The search for functions that simultaneously generalize weighted means and ordered weighted averaging (OWA)

operators (Yager [1]) is an interesting problem in the field of aggregation operators. Given that both families of

functions are defined by means of weighting vectors, most of the studies consider functions parametrized by two

weighting vectors, p for the weighted mean and w for the OWA operator, so that we can recover the weighted mean

when w = (1/n, . . . , 1/n) and the OWA operator when p = (1/n, . . . , 1/n).

Among the constructions proposed in the literature (see Roy [2], Llamazares [3, 4], and Beliakov [5] for an analysis

of some of them), those based on the Choquet integral are of special interest due mainly to two reasons. The first one

is that both the weighted means and the OWA operators are specific cases of the Choquet integral. The second one

is that Choquet integrals satisfy some desirable properties in certain information aggregation contexts: monotonicity,

compensativeness, idempotency, continuity and homogeneity of degree 1.

One of the most interesting generalizations is the family of semiuninorm-based ordered weighted averaging

(SUOWA) operators (Llamazares [6]). In these functions, the capacities on which Choquet integrals are based are
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built by using the capacities associated with the weighted means and the OWA operators, and “assembling” these

values through a semiuninorm with neutral element 1/n.1 In addition to this natural construction, SUOWA operators

have the following advantages over other approaches proposed in the literature:

1. Some indices such as the orness degree (Yager [1], Marichal [7]), the Shapley value (Shapley [8]), the veto and

favor indices (Marichal [7]), and the k-conjunctiveness and k-disjunctiveness indices (Marichal [9]), which are

of special interest in the study of games and capacities, can be given through closed-form expressions for some

specific cases of SUOWA operators (Llamazares [10, 11, 12, 4, 13, 14]).

2. SUOWA operators allow us to preserve some of the main features of weighted means and OWA operators.

Recall that weighted means allow to weight each information source in relation to their importance while OWA

operators, which are in fact convex combinations of order statistics, allow that extreme values (also known as

outliers) can be discarded by using appropriate weighting vectors (trimmed and Winsorized means are well-

known examples of OWA operators that possess this property). In this sense, SUOWA operators allow to get

operators located between two order statistics that take into account the weights of the information sources

(Llamazares [12, 4, 13]).2

It is also worth emphasizing that some families of operators recently introduced in the literature are closely related

to SUOWA operators. For instance:

1. The Winsorized weighted mean introduced by Llamazares [13], which is the natural generalization of the Win-

sorized mean (see Dixon [15], and Wainer [16]), is a specific case of SUOWA operators.

2. The solution of a convex optimization problem proposed by Labreuche [17] is also a specific case of SUOWA

operators (Llamazares [18, 11, 12]).

3. The games proposed by Jin et al. [19] in the Crescent Method can be expressed as a two-piecewise function

where the first piece coincides with a game associated with a SUOWA operator and the second piece is the dual

of a game also obtained in the context of SUOWA operators (see Llamazares [14]).

4. The games associated with Semi-SUOWA operators, which are generalizations of those used in the Crescent

Method, were introduced by Llamazares [20] and are defined through a two-piecewise function where the first

piece is a game associated with a SUOWA operator, υU
p,w, and the second piece is the dual of the game obtained

by using the same semiuninorm U, the same weighting vector p, and the dual of w, i.e., υU
p,w.

The main aim of this paper is to analyze the games associated with Semi-SUOWA operators from different per-

spectives. Hence, we introduce a condition on the semiuninorm U that allows us to obtain capacities when the

weighting vector w is unimodal. It is worth noting that this result generalizes another one obtained by Llamazares

[20] for a specific family of semiuninorms. In addition to this, we establish some relationships between some games

1In some cases the resulting game is not monotonic and it is necessary to consider the monotonic cover of the game to obtain a capacity.
2Notice that this property is not fulfilled for other generalizations proposed in the literature (see Beliakov [5]).
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associated with SUOWA and Semi-SUOWA operators and, in the case of nondecreasing and nonincreasing weighting

vectors w, we give simple Hasse diagrams showing the usual partial order between these games. Lastly, we also show

the pointwise convergence of certain games.

The remainder of the paper is organized as follows. In Section 2 we recall some concepts and results in the

framework of SUOWA and Semi-SUOWA operators. In Section 3 we give conditions that guarantee the monotonicity

of the games associated with Semi-SUOWA operators. Moreover, we also establish some relationships between some

games associated with SUOWA and Semi-SUOWA operators. Section 4 is devoted to show the pointwise convergence

of some games. Finally, some concluding remarks are provided in Section 5.

2. Preliminaries

Throughout the paper we will use the following notation: N denotes the set {1, . . . , n}, |A| and Ac denote, re-

spectively, the cardinality and the complement of a subset A of N, vectors are denoted in bold, η is the vector

(1/n, . . . , 1/n) ∈ Rn, and given x ∈ Rn, [·] and (·) denote permutations such that x[1] ≥ · · · ≥ x[n] and x(1) ≤ · · · ≤ x(n).

A game υ on N is a set function, υ : 2N −→ R satisfying υ(∅) = 0. Monotonic games are called capacities, and a

capacity µ is normalized if µ(N) = 1 (see Mesiar et al. [21] for an interesting study on the constructions of normalized

capacities by means of aggregation and implication functions). The monotonic cover (see Maschler and Peleg [22],

and Maschler et al. [23]) of a game υ is the set function υ̂ defined by

υ̂(A) = max
B⊆A

υ(B).

By construction, υ̂ is a capacity, and υ̂ = υ when υ is a capacity. Moreover, υ̂ is a normalized capacity when υ(N) = 1

and υ(A) ≤ 1 for all A ⊆ N. The dual of a game υ is the game defined by υ(A) = 1 − υ(Ac), where A ⊆ N. It is easy to

check that the dual of a normalized capacity is also a normalized capacity.

The Choquet integral (see, for instance, Choquet [24], Denneberg [25], and Grabisch et al. [26]) with respect to a

normalized capacity µ is the function Cµ : Rn −→ R given by

Cµ(x) =

n∑
i=1

µ(A[i])
(
x[i] − x[i+1]

)
,

where A[i] = {[1], . . . , [i]}, and we use the convention x[n+1] = 0.

Weighted means and OWA operators are two of the best-known specific cases of Choquet integrals. Both are

defined through weighting vectors; that is, nonnegative vectors whose components sum to 1.3 The weighted mean Mp

associated with a weighting vector p is the Choquet integral with respect to the normalized capacity µp(A) =
∑

i∈A pi,

that is,

Mp(x) =

n∑
i=1

pixi;

3It is worth noting that the choice of the weight distribution has generated a large literature (in the case of OWA operators, see, for instance,

Llamazares [27] and Liu [28]).

3



whereas the OWA operator Ow associated with a weighting vector w is the Choquet integral with respect to the

normalized capacity µ|w|(A) =
∑|A|

i=1 wi, that is,

Ow(x) =

n∑
i=1

wix[i].

Notice that OWA operators are convex combinations of order statistics. Moreover, the dual of µ|w| (that for the sake of

simplicity we will denote by µ|w| instead of µ|w|) is given by µ|w|, where w is the dual of w; that is, w = (wn,wn−1, . . . ,w1)

(equivalently, wi = wn+1−i).

An outstanding family of weighting vectors are the unimodal ones (see Llamazares [29]). A weighting vector w

is unimodal if there exists an index k such that w1 ≤ · · · ≤ wk−1 ≤ wk ≥ wk+1 ≥ · · · ≥ wn. Notice that unimodal

weighting vectors embrace, among others, nondecreasing (w1 ≤ · · · ≤ wn), nonincreasing (w1 ≥ · · · ≥ wn), and

centered weighting vectors (Yager [30]). The set of unimodal weighting vectors will be denoted byWu.

The following lemmas, which gather some properties on unimodal weighting vectors, have been proven by Lla-

mazares [29, 20].

Lemma 1. Given w ∈ Wu, if we define

Lw =

l ∈ N |
l∑

i=1

wi <
l
n

 , Lw =

l ∈ N |
l∑

i=1

wi >
l
n

 ,
lw =


0, if Lw = ∅,

max Lw, otherwise,
lw =


n + 1, if Lw = ∅,

min Lw, otherwise,

then

1. lw < lw.

2. If Lw , ∅, then Lw = {1, . . . , lw}.

3. If Lw , ∅, then Lw = {lw, . . . , n − 1}.

According to the previous lemma, each unimodal weighting vector w has associated two indices, lw and lw, so

given ∅ , A  N we have

1. |A| ≤ lw ⇔ µ|w|(A)/|A| < 1/n.

2. lw < |A| < lw ⇔ µ|w|(A)/|A| = 1/n.

3. lw ≤ |A| ⇔ µ|w|(A)/|A| > 1/n.

The next lemma shows some relationships between the indices lw and lw of a unimodal weighting vector and its

dual.

Lemma 2. Let w ∈ Wu. Then

1. lw = 0 ⇔ lw = n + 1.
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2. If lw , 0, then lw + lw = n.

3. lw = n + 1 ⇔ lw = 0.

4. If lw , n + 1, then lw + lw = n.

The last lemma establishes that the sequence formed by the averages of the components of a unimodal weighting

vector w is nondecreasing up to the index lw.

Lemma 3. Let w ∈ Wu and p, q ∈ N with p < q ≤ lw. Then

1
p

p∑
i=1

wi ≤
1
q

q∑
i=1

wi.

In the next subsections we recall some fundamental notions on semiuninorms, SUOWA, and Semi-SUOWA oper-

ators.

2.1. Semiuninorms

SUOWA operators were introduced by Llamazares [6] as a generalization of weighted means and OWA operators.

In their definition, semiuninorms (see Liu [31]) play a fundamental role. A semiuninorm is a monotonic function

U : [0, 1]2 −→ [0, 1] that has a neutral element e.4 The structure of semiuninorms has been studied by Liu [31,

Propositions 2.1 and 2.2] and it is showed in Figure 1.
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(a) Generic semiuninorms.
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(b) Idempotent semiuninorms.

Figure 1: The structure of semiuninorms.

The set of semiuninorms with 1/n as neutral element is denoted by U1/n, and the semiuninorms used in the

definition of SUOWA operators have to belong to the following subset (see Llamazares [6]):

Ũ1/n =
{
U ∈ U1/n | U(1/k, 1/k) ≤ 1/k for all k ∈ N

}
.

4Semiuninorms are, in fact, generalizations of uninorms (Yager and Rybalov [32]) where the commutativity and associativity properties are

ruled out.
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In Table 1 we collect some relevant semiuninorms that have been analyzed in the literature [33, 34, 4]. Notice that U⊥

and U> are, respectively, the smallest and the largest elements of Ũ1/n, whereas Umin and Umax are, respectively, the

smallest and the largest idempotent semiuninorms of Ũ1/n. A Hasse diagram showing the usual partial order between

the semiuninorms given in Table 1 can be found in Llamazares [4].

In addition to the previous ones, a new family of semiuninorms has been introduced in a recent paper (see Lla-

mazares [20]) by using strictly increasing functions: If h : [0, 1] −→ [−∞,∞] is a strictly increasing function with

{−∞,∞} * Ran(h), the semiuninorm Umax
h is defined by

Umax
h (x, y) =


H(x, y) if y ≤ 1/n,

max(x, y) if y > 1/n,

where H(x, y) = h(−1)(h(x) + h(y) − h(1/n)
)

and h(−1) is the pseudo-inverse of h (see Klement et al. [35]). Notice that

Umax
h is continuous when h is continuous.

2.2. SUOWA operators

As we have seen previously, capacities play a fundamental role in the definition of Choquet integrals. In the case of

SUOWA operators, the capacities are the monotonic cover of certain games, which are defined by using semiuninorms

with neutral element 1/n and the values of the capacities associated with the weighted means and the OWA operators.

Definition 1. Let p and w be two weighting vectors and let U ∈ Ũ1/n.

1. The game υU
p,w associated with p, w and U is the set function defined by

υU
p,w(A) = |A|U

(
µp(A)
|A|

,
µ|w|(A)
|A|

)
= |A|U

∑i∈A pi

|A|
,

∑|A|
i=1 wi

|A|

 ,
if A , ∅, and υU

p,w(∅) = 0.

2. The SUOWA operator associated with p,w and U is the Choquet integral with respect to the capacity υ̂U
p,w (that

is, the monotonic cover of υU
p,w), and it will be denoted by S U

p,w.

Note that, by construction, SUOWA operators allow us to recover the weighted mean Mp when w = η and the

OWA operator Ow when p = η; that is, υ̂U
p,η = µp and υ̂U

η,w = µ|w| for any U ∈ Ũ1/n. A summary of the main properties

of SUOWA operators can be found in Llamazares [4].

In the case of the semiuninorm Umax
h , the game υUmax

h
p,w , which for simplicity will be denoted by υ h

p,w, is given by

υ h
p,w(A) =


Hp,w(A) if µ|w|(A) ≤ |A|/n,

max
(
µp(A), µ|w|(A)

)
if µ|w|(A) > |A|/n,

where A is any nonempty subset of N and

Hp,w(A) = |A|H
(
µp(A)
|A|

,
µ|w|(A)
|A|

)
= |A| h(−1)

(
h
(
µp(A)
|A|

)
+ h

(
µ|w|(A)
|A|

)
− h(1/n)

)
.
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Table 1: Some relevant semiuninorms and their structure.

Semiuninorm Structure of the semiuninorm

U>(x, y) =



1/k if (x, y) ∈ Ik\Ik+1,where

Ik =
(
1/n, 1/k

]2 (
k ∈ N\{n}

)
,

min(x, y) if (x, y) ∈ [0, 1/n]2,

max(x, y) otherwise.
0 1/n 1

1/n

1

max

max

min

U>

Umax(x, y) =


min(x, y) if (x, y) ∈ [0, 1/n]2,

max(x, y) otherwise.

0 1/n 1

1/n

1

min

max

Uminmax(x, y) =


min(x, y) if x < 1/n,

y if x = 1/n,

max(x, y) if x > 1/n.

0 1/n 1

1/n

1

min max

Umax
min (x, y) =


min(x, y) if y < 1/n,

x if y = 1/n,

max(x, y) if y > 1/n.

0 1/n 1

1/n

1

min

max

Umin(x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

min(x, y) otherwise.

0 1/n 1

1/n

1

min

max

Remark 1. It is worth noting that the partial order between semiuninorms is preserved by the games, the capacities,

and the SUOWA operators; that is, if p and w are two weighting vectors, and U1,U2 ∈ Ũ
1/n, with U1 ≤ U2, then
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Table 1: Some relevant semiuninorms and their structure (continued).

Semiuninorm Structure of the semiuninorm

UTM (x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

min(x, y) if (x, y) ∈ [0, 1/n)2,

x + y − 1/n otherwise.

0 1/n 1

1/n

1

x+y−1/n

x+
y−

1/
n

min

max

UTL (x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

max(x + y − 1/n, 0) otherwise.

0 1/n 1

1/n

1

0

x+y−1/n

max

UP(x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

min(x, y) if (x, y) ∈ [0, 1/n)2,

nxy otherwise.

0 1/n 1

1/n

1

nxy

nxy

min

max

UP̃(x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

nxy otherwise.

0 1/n 1

1/n

1

nxy

max

U⊥(x, y) =


max(x, y) if (x, y) ∈ [1/n, 1]2,

0 if (x, y) ∈ [0, 1/n)2,

min(x, y) otherwise.

0 1/n 1

1/n

1

min

min

0

max

υU1
p,w ≤ υ

U2
p,w, υ̂U1

p,w ≤ υ̂
U2
p,w, and S U1

p,w ≤ S U2
p,w. Hence, a Hasse diagram similar to that shown by Llamazares [4] for some

semiuninorms can be performed for the corresponding games, capacities and SUOWA operators. Notice also that if
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U ∈ Ũ1/n, then υU⊥
p,w ≤ υ

U
p,w ≤ υ

U>
p,w, υ̂U⊥

p,w ≤ υ̂
U
p,w ≤ υ̂

U>
p,w, and S U⊥

p,w ≤ S U
p,w ≤ S U>

p,w.

2.3. Semi-SUOWA operators

The games associated with this family of operators are closely related to those associated with SUOWA operators.

In fact, they coincide with υU
p,w(A) when µ|w|(A) ≤ |A|/n, and with υU

p,w(A) when µ|w|(A) > |A|/n (notice that υU
p,w is the

dual of the game associated with p, w and U).

Definition 2. Let p and w be two weighting vectors and let U ∈ Ũ1/n.

1. The game ξU
p,w associated with p, w and U is the set function defined by

ξU
p,w(A) =


υU

p,w(A) if µ|w|(A) ≤ |A|/n,

υU
p,w(A) = ξ

U
p,w(A) = 1 − ξU

p,w(Ac) if µ|w|(A) > |A|/n,

=


|A|U

(
µp(A)
|A|

,
µ|w|(A)
|A|

)
if µ|w|(A) ≤ |A|/n,

1 − (n − |A|) U
(

1 − µp(A)
n − |A|

,
1 − µ|w|(A)

n − |A|

)
if µ|w|(A) > |A|/n,

if A , ∅, and ξU
p,w(∅) = 0.

2. The Semi-SUOWA operator associated with p,w and U is the Choquet integral with respect to the capacity ξ̂U
p,w

(that is, the monotonic cover of ξU
p,w).

It is worthy of noting that if µ|w|(A) ≤ |A|/n then µ|w|(A)/|A| ≤ 1/n, and when µ|w|(A) > |A|/n we also have(
1 − µ|w|(A)

)
/(n − |A|) < 1/n. Therefore the games ξU

p,w only use the values of U in the region [0, 1] × [0, 1/n]; hence,

instead of semiuninorms we can consider in their definition any monotonic function U : [0, 1] × [0, 1/n] −→ [0, 1]

such that U(1/n, y) = y and U(x, 1/n) = x.

Notice also that when µ|w|(A) = |A|/n, we have ξU
p,w(A) = µp(A). Since this value is also obtained with the

expression 1 − (n − |A|) U
(

1 − µp(A)
n − |A|

,
1 − µ|w|(A)

n − |A|

)
, when A , ∅ the game ξU

p,w can also be written as

ξU
p,w(A) =


|A|U

(
µp(A)
|A|

,
µ|w|(A)
|A|

)
if µ|w|(A) < |A|/n,

1 − (n − |A|) U
(

1 − µp(A)
n − |A|

,
1 − µ|w|(A)

n − |A|

)
if µ|w|(A) ≥ |A|/n.

As in the case of SUOWA operators, Semi-SUOWA operators allow us to recover the weighted mean Mp when

w = η and the OWA operator Ow when p = η; that is, ξ̂U
p,η = µp and ξ̂U

η,w = µ|w| for any U ∈ Ũ1/n.

In the case of the semiuninorm Umax
h , the game ξUmax

h
p,w , which for simplicity will be denoted by ξ h

p,w, is given by

ξ h
p,w(A) =


Hp,w(A), if µ|w|(A) ≤ |A|/n,

1 − Hp,w(Ac), if µ|w|(A) > |A|/n,
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that is,

ξ h
p,w(A) =


|A| h(−1)

(
h
(
µp(A)
|A|

)
+ h

(
µ|w|(A)
|A|

)
− h(1/n)

)
if µ|w|(A) ≤ |A|/n,

1 − (n − |A|) h(−1)
(
h
(

1 − µp(A)
n − |A|

)
+ h

(
1 − µ|w|(A)

n − |A|

)
− h(1/n)

)
if µ|w|(A) > |A|/n,

where A is any nonempty subset of N.

We finish this section by showing that the games associated with SUOWA and Semi-SUOWA operators are dif-

ferent families of games (and none of them is contained in the other). To do this, consider the weighting vectors

p = (0.5, 0.2, 0.2, 0.1) and w = (0.4, 0.1, 0.1, 0.4). It is easy to check that ξU⊥
p,w({1}) = 1 whereas υU>

p,w({1}) = 0.5.

Therefore, according to Remark 1, there is no semiuninorm U ∈ Ũ1/n such that υU
p,w = ξU⊥

p,w. Reciprocally, suppose

there exists a semiuninorm U ∈ Ũ1/n such that ξU
p,w = υU⊥

p,w. Then 3U(0.5/3, 0.2) = ξU
p,w({2, 3, 4}) = υU⊥

p,w({2, 3, 4}) = 0.

But then ξU
p,w({1}) = 1 − 3U(0.5/3, 0.2) = 1 , 0.5 = υU⊥

p,w({1}), which contradicts the hypothesis.

3. Some results on the games ξU
p,w

In this section we analyze some games associated with Semi-SUOWA operators. On the one hand, we introduce a

condition on the semiuninorm U that allows us to obtain capacities when the weighting vector w is unimodal. On the

other hand, we establish some relationships between the games ξU
p,w and υU

p,w for the semiuninorms given in Table 1.

Of special interest are the cases in which the weighting vector w is nondecreasing or nonincreasing because we can

provide simple Hasse diagrams showing the usual partial order between these games.

3.1. Obtaining capacities with unimodal weighting vectors

In this subsection we establish conditions under which we can assure that the game ξU
p,w is a capacity. To be

specific, we give a condition on the semiuninorm U that guarantees the monotonicity of the game ξU
p,w when w ∈ Wu.

To this end, we will use the following lemma.

Lemma 4. Let w ∈ Wu and let U be a semiuninorm such that U(tx, y) ≤ tU(x, y) for any y ≤ 1/n, x ∈ [0, 1], and

t > 1 such that tx ∈ [0, 1]. Then, for any weighting vector p, ξU
p,w(A) ≤ ξU

p,w(B) for any A, B ⊆ N, with ∅ , A  B and

|B| ≤ lw.

Proof. Let p and w be two weighting vectors with w ∈ Wu, and let U be a semiuninorm satisfying the hypotheses. If

∅ , A  B and |B| ≤ lw, then, by Lemma 3 we have µ|w|(A)/|A| ≤ µ|w|(B)/|B|. Therefore,

ξU
p,w(A) = |A|U

(
µp(A)
|A|

,
µ|w|(A)
|A|

)
≤ |A|U

(
|B|
|A|

µp(B)
|B|

,
µ|w|(B)
|B|

)
≤ |B|U

(
µp(B)
|B|

,
µ|w|(B)
|B|

)
= ξU

p,w(B).

Theorem 1. Let w ∈ Wu and let U be a semiuninorm such that U(tx, y) ≤ tU(x, y) for any y ≤ 1/n, x ∈ [0, 1], and

t > 1 such that tx ∈ [0, 1]. Then, for any weighting vector p, ξU
p,w is a normalized capacity on N.
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Proof. Let p and w be two weighting vectors with w ∈ Wu. Consider A  B with |A| ≥ 1 and |B| < n (the cases A = ∅

and B = N are trivial). We distinguish the following cases:

1. If |B| ≤ lw, then by Lemma 4, ξU
p,w(A) ≤ ξU

p,w(B).

2. If |A| ≤ lw and lw < |B| < lw, then

ξU
p,w(A) ≤ |A|U

(
µp(A)
|A|

,
1
n

)
= µp(A) ≤ µp(B) = |B|U

(
µp(B)
|B|

,
1
n

)
= ξU

p,w(B).

3. If lw < |A| < |B| < lw, then ξU
p,w(A) = µp(A) ≤ µp(B) = ξU

p,w(B).

4. If |A| < lw and |B| ≥ lw, then by Lemma 2, |Bc| = n − |B| ≤ n − lw = lw. So,

ξU
p,w(A) ≤ µp(A) ≤ µp(B) = 1 − µp(Bc) ≤ 1 − ξU

p,w(Bc) = ξU
p,w(B).

5. If |B| > |A| ≥ lw, then by Lemma 2, |Bc| < |Ac| ≤ lw; and, by Lemma 4, ξU
p,w(Bc) ≤ ξU

p,w(Ac). Therefore,

ξU
p,w(A) = 1 − ξU

p,w(Ac) ≤ 1 − ξU
p,w(Bc) = ξU

p,w(B).

It is obvious to check that the semiuninorm UP̃ satisfies the condition given in Theorem 1. Therefore, the game

ξ
UP̃
p,w is a capacity when w is unimodal.5 Next we show that also the semiuninorm UP satisfies the condition given in

Theorem 1 and, consequently, ξUP
p,w is a capacity when w ∈ Wu.

Proposition 1. The semiuninorm UP satisfies that UP(tx, y) ≤ tUP(x, y) for any y ≤ 1/n, x ∈ [0, 1], and t > 1 such

that tx ∈ [0, 1].

Proof. Consider y ≤ 1/n, x ∈ [0, 1], and t > 1 such that tx ∈ [0, 1]. We distinguish the following cases:

1. If tx ≤ y, then UP(tx, y) = min(tx, y) = tx = t min(x, y) = tUP(x, y).

2. If y < tx ≤ 1/n, then UP(tx, y) = min(tx, y) = y < min(tx, ty) = t min(x, y) = tUP(x, y).

3. If 1/n < x, then UP(tx, y) = ntxy = tUP(x, y).

4. If x ≤ 1/n < tx, then UP(tx, y) = ntxy = tn max(x, y) min(x, y) ≤ t min(x, y) = tUP(x, y).

Corollary 1. Let w ∈ Wu. Then, for any weighting vector p, ξUP
p,w is a normalized capacity on N.

It is worth noting that Theorem 1 generalizes the result obtained by Llamazares [20] for the games ξ h
p,w. A similar

generalization can be given for the games υ h
p,w.

Theorem 2. Let w ∈ Wu and let U be a semiuninorm such that U
∣∣∣
[0,1]×(1/n,1] = max and U(tx, y) ≤ tU(x, y) for any

y ≤ 1/n, x ∈ [0, 1], and t > 1 such that tx ∈ [0, 1]. Then, for any weighting vector p, υU
p,w is a normalized capacity on

N.

5Notice that the game ξ
UP̃
p,w coincides with the game obtained with the Crescent Method (see Llamazares [14]), and it has already been proven,

using another method, that it is a capacity when w is unimodal (see Llamazares [20]).
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1/n
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Figure 2: Regions of the square [0, 1]2.

Proof. Let p and w be two weighting vectors with w ∈ Wu. Consider A  B with |A| ≥ 1 and |B| < n (the cases A = ∅

and B = N are trivial). We distinguish the following cases:

1. If |B| ≤ lw, then by Lemma 4, υU
p,w(A) = ξU

p,w(A) ≤ ξU
p,w(B) = υU

p,w(B).

2. If |B| > lw and |A| < lw, then υU
p,w(A) ≤ µp(A) ≤ µp(B) ≤ υU

p,w(B).

3. If |A| ≥ lw, then υU
p,w(A) = max

(
µp(A), µ|w|(A)

)
≤ max

(
µp(B), µ|w|(B)

)
= υU

p,w(B).

3.2. Some relationships between ξU
p,w and υU

p,w

Notice that by definition of the games ξU
p,w, semiuninorms defined in the same way in the region [0, 1] × [0, 1/n]

return the same games ξU
p,w. Therefore, ξUmin

p,w = ξ
Umax

min
p,w , and ξU>

p,w = ξUmax
p,w = ξUminmax

p,w (see Table 1). In addition to this,

we are going to prove that these games coincide with υ
Umax

min
p,w and υUminmax

p,w , respectively. To do this, we are going to

use the following remark where, for some semiuninorms U, we express the value ξU
p,w(A) (for subsets A satisfying

µ|w|(A) > |A|/n) as a function of µp(A)/|A| and µ|w|(A)/|A|.

Remark 2. Consider the four regions of the square [0, 1]2 (see Figure 2):

R1 = [1/n, 1]2, R2 = [0, 1/n) × (1/n, 1], R3 = [0, 1/n]2, R4 = (1/n, 1] × [0, 1/n).

Given two weighting vectors p and w, and ∅ , A  N, it is easy to check the following equivalences6:

µp(A)
|A|

≥
1
n
⇔

1 − µp(A)
n − |A|

≤
1
n
,

µ|w|(A)
|A|

≥
1
n
⇔

1 − µ|w|(A)
n − |A|

≤
1
n
.

Therefore we have(
µp(A)
|A|

,
µ|w|(A)
|A|

)
∈ Ri ⇔

(
1 − µp(A)

n − |A|
,

1 − µ|w|(A)
n − |A|

)
∈ Ri+2 i ∈ {1, 2}.

6Note that if we only consider the equalities, the equivalences are also maintained.
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Now consider ∅ , A  N with µ|w|(A)/|A| > 1/n. Then

ξU
p,w(A) = 1 − (n − |A|) U

(
1 − µp(A)

n − |A|
,

1 − µ|w|(A)
n − |A|

)
.

In the following cases we can express the value ξU
p,w(A) as a function of µp(A)/|A| and µ|w|(A)/|A| (notice that in the last

three cases it corresponds to a game associated with a SUOWA operator; that is, it coincides with υU1
p,w(A) for some

U1 ∈ Ũ
1/n).

1. If
(
µp(A)/|A|, µ|w|(A)/|A|

)
∈ R1 and U

∣∣∣
R3

= 0, then ξU
p,w(A) = 1.

2. If
(
µp(A)/|A|, µ|w|(A)/|A|

)
∈ R1 and U

∣∣∣
R3

= min, or
(
µp(A)/|A|, µ|w|(A)/|A|

)
∈ R2 and U

∣∣∣
R4

= min, then

ξU
p,w(A) = 1 − (n − |A|) min

(
1 − µp(A)

n − |A|
,

1 − µ|w|(A)
n − |A|

)
= max

(
µp(A), µ|w|(A)

)
.

3. If
(
µp(A)/|A|, µ|w|(A)/|A|

)
∈ R2 and U

∣∣∣
R4

= max, then

ξU
p,w(A) = 1 − (n − |A|) max

(
1 − µp(A)

n − |A|
,

1 − µ|w|(A)
n − |A|

)
= min

(
µp(A), µ|w|(A)

)
.

4. If
(
µp(A)/|A|, µ|w|(A)/|A|

)
∈ R2 and U

∣∣∣
R4

(x, y) = x + y − 1/n, then

ξU
p,w(A) = 1− (n− |A|)

(
1 − µp(A)

n − |A|
+

1 − µ|w|(A)
n − |A|

−
1
n

)
= µp(A) + µ|w|(A)−

|A|
n

= |A|
(
µp(A)
|A|

+
µ|w|(A)
|A|

−
1
n

)
.

Proposition 2. Let p and w be two weighting vectors. Then ξUmin
p,w = ξ

Umax
min

p,w = υ
Umax

min
p,w .

Proof. Given A  N with |A| ≥ 1, we distinguish two cases:

1. If µ|w|(A) ≤ |A|/n, then it is obvious that ξUmax
min

p,w (A) = υ
Umax

min
p,w (A).

2. If µ|w|(A) > |A|/n, then
(
µp(A)/|A|, µ|w|(A)/|A|

)
∈ R1 ∪ R2, and Umax

min

∣∣∣
R3∪R4

= min. Therefore, by the second item

of Remark 2, ξUmax
min

p,w (A) = max
(
µp(A), µ|w|(A)

)
= υ

Umax
min

p,w (A).

Proposition 3. Let p and w be two weighting vectors. Then ξU>
p,w = ξUmax

p,w = ξUminmax
p,w = υUminmax

p,w .

Proof. Given A  N with |A| ≥ 1, we distinguish three cases:

1. If µ|w|(A) ≤ |A|/n, then it is obvious that ξUminmax
p,w (A) = υUminmax

p,w (A).

2. If µ|w|(A) > |A|/n and µp(A) < |A|/n, then
(
µp(A)/|A|, µ|w|(A)/|A|

)
∈ R2, and Uminmax

∣∣∣
R4

= max. Therefore, by the

third item of Remark 2, ξUminmax
p,w (A) = min

(
µp(A), µ|w|(A)

)
= υUminmax

p,w (A).

3. If µ|w|(A) > |A|/n and µp(A) ≥ |A|/n, then
(
µp(A)/|A|, µ|w|(A)/|A|

)
∈ R1, and Uminmax

∣∣∣
R3

= min. Therefore, by the

second item of Remark 2, ξUminmax
p,w (A) = max

(
µp(A), µ|w|(A)

)
= υUminmax

p,w (A).

In the case of the semiuninorm UTM we also have the equality between the games ξ
UTM
p,w and υ

UTM
p,w .

Proposition 4. Let p and w be two weighting vectors. Then ξ
UTM
p,w = υ

UTM
p,w .
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Proof. Given A  N with |A| ≥ 1, we distinguish three cases:

1. If µ|w|(A) ≤ |A|/n, then it is obvious that ξ
UTM
p,w (A) = υ

UTM
p,w (A).

2. If µ|w|(A) > |A|/n and µp(A) < |A|/n, then
(
µp(A)/|A|, µ|w|(A)/|A|

)
∈ R2, and UTM

∣∣∣
R4

(x, y) = x+y−1/n. Therefore,

by the fourth item of Remark 2,

ξ
UTM
p,w (A) = |A|

(
µp(A)
|A|

+
µ|w|(A)
|A|

−
1
n

)
= υ

UTM
p,w (A).

3. If µ|w|(A) > |A|/n and µp(A) ≥ |A|/n, then
(
µp(A)/|A|, µ|w|(A)/|A|

)
∈ R1, and UTM

∣∣∣
R3

= min. Therefore, by the

second item of Remark 2, ξ
UTM
p,w (A) = max

(
µp(A), µ|w|(A)

)
= υ

UTM
p,w (A).

In addition to the previously established relationships (i.e., ξUmin
p,w = ξ

Umax
min

p,w = υ
Umax

min
p,w , ξU>

p,w = ξUmax
p,w = ξUminmax

p,w = υUminmax
p,w ,

and ξ
UTM
p,w = υ

UTM
p,w for any weighting vectors p and w) we can provide some new interesting relations when the

weighting vectors w are nondecreasing or nonincreasing.

In the case of nondecreasing weighting vectors w, we have
∑ j

i=1 wi ≤ j/n for all j ∈ N (see Llamazares [34]).

This means that µ|w|(A) ≤ |A|/n for any nonempty subset A of N, and consequently, υU
p,w = ξU

p,w for any weighting

vector p and any semiuninorm U. Moreover, these games only uses the values of the semiuninorm in the region

[0, 1] × [0, 1/n]. Therefore, semiuninorms defined in the same way in this region return the same games. Note also

that, for any weighting vector p, the games υU
p,w are capacities when U = Umin, U = Umax

min , U = UP or U = UP̃ (see

Llamazares [34, 29, 4]).

In the case of nonincreasing weighting vectors w, we have
∑ j

i=1 wi ≥ j/n for all j ∈ N (see Llamazares [34]). This

means that µ|w|(A) ≥ |A|/n for any nonempty subset A of N, and consequently, the games υU
p,w only uses the values of

the semiuninorms in the region [0, 1] × [1/n, n]. So, semiuninorms defined in the same way in this region return the

same games υU
p,w; that is (see Table 1),

1. υUmax
p,w = υ

Umax
min

p,w , and both are capacities (see Llamazares [34]).

2. υUminmax
p,w = υUmin

p,w = υU⊥
p,w, υ

UTM
p,w = υ

UTL
p,w , υUP

p,w = υ
UP̃
p,w.

Regarding the games ξU
p,w, we have the following results.

Proposition 5. Let w be a nonincreasing weighting vector and let U1,U2 ∈ Ũ
1/n such that U1 ≤ U2.7 Then ξU1

p,w ≥ ξ
U2
p,w

for any weighting vector p.

Proof. Given A , ∅, since µ|w|(A) ≥ |A|/n, we have

ξU1
p,w(A) = 1 − (n − |A|) U1

(
1 − µp(A)

n − |A|
,

1 − µ|w|(A)
n − |A|

)
≥ 1 − (n − |A|) U2

(
1 − µp(A)

n − |A|
,

1 − µ|w|(A)
n − |A|

)
= ξU2

p,w(A).

Proposition 6. Let w be a nonincreasing weighting vector. Then ξU⊥
p,w ≥ υ

U>
p,w for any weighting vector p.

7In fact, for the result to be true it is sufficient that the inequality be satisfied in the region [0, 1] × [0, 1/n].

14



Table 2: Values of some games in subsets of cardinality 1.

Set ξ
UP̃
p,w ξ

UTL
p,w υU>

p,w ξUmin
p,w ξUP

p,w

{1} 0.6 0.65 0.5 0.5 0.5

{2} 0.36 0.35 0.4 0.4 0.36

{3} 0.36 0.35 0.4 0.4 0.36

{4} 0.28 0.25 0.4 0.4 0.28

Proof. Given A , ∅, since µ|w|(A) ≥ |A|/n, we distinguish the following cases:

1. If µ|w|(A) = |A|/n, then ξU⊥
p,w(A) = υU>

p,w(A) = µp(A).

2. If µ|w|(A) > |A|/n and µp(A) < |A|/n, then
(
µp(A)/|A|, µ|w|(A)/|A|

)
∈ R2, and U⊥

∣∣∣
R4

= min. Therefore, by the

second item of Remark 2, ξU⊥
p,w(A) = max

(
µp(A), µ|w|(A)

)
= υU>

p,w(A).

3. If µ|w|(A) > |A|/n and µp(A) ≥ |A|/n, then
(
µp(A)/|A|, µ|w|(A)/|A|

)
∈ R1, and U⊥

∣∣∣
R3

= 0. Therefore, by the first

item of Remark 2, ξU⊥
p,w(A) = 1 ≥ υU>

p,w(A).

It is also worth noting that it is not possible to establish an order between ξUP̃
p,w and υU>

p,w or ξUmin
p,w ; nor between ξ

UTL
p,w

and the previous games or ξUP
p,w. To see this, consider Table 2 where we show the values of the above games on the sets

of cardinality 1 when n = 4, p = (0.5, 0.2, 0.2, 0.1), and w = (0.4, 0.3, 0.2, 0.1).

The above comments on the games υU
p,w and ξU

p,w, along with those made in Remark 1, can be summarized in

Figures 3a and 3b, where we show Hasse diagrams of the usual partial order between these games in the case of

nondecreasing and nonincreasing weighting vectors w (being U a semiuninorm of those considered in Table 1). Games

in the same node means that they are the same game, and the blue color means that the games are capacities.

4. The pointwise convergence of the games υ h
p,w and ξ h

p,w

The study of the games υ h
p,w and ξ h

p,w has been carried out by Llamazares [20]. One of the results given there

establishes condition under which the functions of the form h(x) = −
(
f (x)

)−k or h̃(x) = − e( f (x))−k
, where k > 0, allow

to obtain normalized capacities when w is unimodal. Moreover, seven types of functions, together with the conditions

on k, were given to illustrate the variety of functions available.

In this section we are going to show that when h is of one of the above forms, the games υ h
p,w and ξ h

p,w converge

pointwise to the game υUmax
min

p,w . To prove this, we first show the pointwise convergence of the semiuninorms Umax
h and

Umax
h̃

to Umax
min (notice that in the case of Umax

h̃
it is necessary to impose an additional condition on the function f ).

Proposition 7. Let f : [0, 1] −→ [0, f (1)] be a strictly increasing bijection. Then,
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υU>
p,w ξU>

p,w

υUmax
p,w ξUmax

p,w

υUminmax
p,w ξUminmax

p,w

υ
UTM
p,w ξ

UTM
p,w

υUP
p,w ξUP

p,w

υ
UP̃
p,w ξ

UP̃
p,w υ

UTL
p,w ξ

UTL
p,w

υ
Umax

min
p,w ξ

Umax
min

p,w

υUmin
p,w ξUmin

p,w

υU⊥
p,w ξU⊥

p,w

(a) Nondecreasing weighting vectors w.

ξU⊥
p,w

υU>
p,w

υUmax
p,w ξUmin

p,w

υ
Umax

min
p,w ξ

Umax
min

p,w
ξ

UP̃
p,w ξ

UTL
p,w

ξUP
p,w

υ
UTM
p,w ξ

UTM
p,w

υ
UTL
p,w

υUP
p,w υ

UP̃
p,w

υUminmax
p,w ξUminmax

p,w

υUmin
p,w ξUmax

p,w

υU⊥
p,w ξU>

p,w

(b) Nonincreasing weighting vectors w.

Figure 3: Hasse diagram showing the usual partial order between some games.

1. If {hm}m∈N is the sequence of functions defined by hm(x) = −
(
f (x)

)−m, then

lim
m→∞

Umax
hm

(x, y) = Umax
min (x, y),

for any (x, y) ∈ [0, 1]2.

2. If f (1/n) ≤ 1 and {h̃m}m∈N is the sequence of functions defined by h̃m(x) = − e( f (x))−m
, then

lim
m→∞

Umax
h̃m

(x, y) = Umax
min (x, y),

for any (x, y) ∈ [0, 1]2.

Proof. Let f : [0, 1] −→ [0, f (1)] be a strictly increasing bijection.

1. Consider the sequence of functions {hm}m∈N defined by hm(x) = −
(
f (x)

)−m (notice that hm(0) = −∞ for any

m ∈ N). Given (x, y) ∈ [0, 1]2, we distinguish the following cases:
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(a) If y ≥ 1/n, then Umax
hm

(x, y) = Umax
min (x, y) for any m ∈ N and, consequently, the result is obvious.

(b) If y < 1/n and xy = 0 (i.e., x = 0 or y = 0), then Umax
hm

(x, y) = 0 = min(x, y) = Umax
min (x, y) for any m ∈ N

and, consequently, the result is obvious.

(c) If y < 1/n and xy , 0, then

Umax
hm

(x, y) = f −1
((

( f (x))−m + ( f (y))−m − ( f (1/n))−m)−1/m
)
.

Since f −1 is continuous and strictly increasing, to prove that

lim
m→∞

Umax
hm

(x, y) = Umax
min (x, y) = min(x, y)

is equivalent to show that

lim
m→∞

(
1

( f (x))m +
1

( f (y))m −
1

( f (1/n))m

)1/m

=
1

min
(
f (x), f (y)

) .
But this result follows from the facts that( 1

( f (x))m +
1

( f (y))m−
1

( f (1/n))m

)1/m
=

1
min

(
f (x), f (y)

) (
1 +

(
min

(
f (x), f (y)

)
max

(
f (x), f (y)

) )m

−

(
min

(
f (x), f (y)

)
f (1/n)

)m)1/m

and that

lim
m→∞

(
1 +

(
min

(
f (x), f (y)

)
max

(
f (x), f (y)

) )m

−

(
min

(
f (x), f (y)

)
f (1/n)

)m)1/m

= 1.

2. Consider the sequence of functions {h̃m}m∈N defined by h̃m(x) = − e( f (x))−m
. Given (x, y) ∈ [0, 1]2, the cases

y ≥ 1/n, and y < 1/n with xy = 0 can be proven by using the same arguments as in the previous item. Consider

now the case y < 1/n with xy , 0. Since

Umax
h̃m

(x, y) = f −1
((

log
(
e( f (x))−m

+ e( f (y))−m
− e( f (1/n))−m))−1/m

)
,

and f −1 is continuous and strictly increasing, to prove that

lim
m→∞

Umax
h̃m

(x, y) = Umax
min (x, y) = min(x, y)

is equivalent to show that

lim
m→∞

(
log

(
e( f (x))−m

+ e( f (y))−m
− e( f (1/n))−m))1/m

=
1

min
(
f (x), f (y)

) .
Note that by using the notation

α =
1

min
(
f (x), f (y)

) , β =
1

max
(
f (x), f (y)

) , and γ =
1

f (1/n)
,

we have α ≥ β, and α > γ ≥ 1. Therefore,

lim
m→∞

(
log

(
e( f (x))−m

+ e( f (y))−m
− e( f (1/n))−m))1/m

= lim
m→∞

(
log

(
eα

m
+ eβ

m
− eγ

m))1/m

= lim
m→∞

(
αm + log

(
1 + e−α

m(1−(β/α)m) − e−α
m(1−(γ/α)m)

))1/m
= α.
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Taking into account the definition of the games υ h
p,w and ξ h

p,w, the following results are obvious.

Corollary 2. Let p and w be two weighting vectors and let f : [0, 1] −→ [0, f (1)] be a strictly increasing bijection.

Then,

1. If {hm}m∈N is the sequence of functions defined by hm(x) = −
(
f (x)

)−m, then

lim
m→∞

υ hm
p,w(A) = υ

Umax
min

p,w (A), and lim
m→∞

ξ hm
p,w(A) = ξ

Umax
min

p,w (A) = υ
Umax

min
p,w (A),

for any A ⊆ N.

2. If f (1/n) ≤ 1 and {h̃m}m∈N is the sequence of functions defined by h̃m(x) = − e( f (x))−m
, then

lim
m→∞

υ h̃m
p,w(A) = υ

Umax
min

p,w (A), and lim
m→∞

ξ h̃m
p,w(A) = ξ

Umax
min

p,w (A) = υ
Umax

min
p,w (A),

for any A ⊆ N.

5. Concluding remarks

Several procedures for constructing families of functions that simultaneously generalize weighted means and OWA

operators have been suggested in recent years. In a recent paper, Llamazares [20] has introduced a new generalization,

the Semi-SUOWA operators, which have a close relationship with SUOWA operators. For this reason, in this paper

we have analyzed the relationships between some games associated with SUOWA and Semi-SUOWA operators and,

in the case of nondecreasing and nonincreasing weighting vectors w, we have given simple Hasse diagrams showing

the usual partial order between the games υU
p,w and ξU

p,w (being U a semiuninorm of those considered in Table 1).

Moreover, we have established a condition on U that guarantees the monotonicity of the game ξU
p,w when w is uni-

modal, and we have shown the pointwise convergence of the games υ h
p,w and ξ h

p,w (for some specific cases of h) to the

game υUmax
min

p,w .
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