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Abstract

Several operators have emerged in the framework of Choquet integral with the purpose of simultaneously generalizing

weighted means and ordered weighted averaging (OWA) operators. However, on many occasions, not enough atten-

tion has been paid to whether the constructed operators behaved similarly to the weighted means and OWA operators

that have been generalized. In this sense, it seems necessary that these new operators preserve the weights assigned to

the information sources (which are established through the weighting vector associated with the weighted mean) and

that they are able to rule out extreme values (which is an important characteristic of OWA operators).

In this paper we analyze a family of operators recently introduced in the literature through the Crescent Method.

First, we introduce a broad class of weighting vectors that allow us to guarantee that the games generated with

the Crescent Method are capacities. Next we analyze the conjunctive/disjuntive character of the Choquet integrals

associated with these capacities and we also give closed-form expressions of some tolerance and importance indices

such as k-conjunctiveness/disjunctiveness indices, the veto and favor indices, and the Shapley values. Finally, we give

two examples to show the usefulness of the results obtained.

Keywords: The Crescent Method, Semi-SUOWA operators, SUOWA operators, Shapley values, Tolerance indices,

Winsorized weighted means.

1. Introduction

Weighted means and ordered weighted averaging (OWA) operators [1] are the best-known particular cases of the

Choquet integral. Both families are defined by means of weighting vectors but, in the case of the weighted means, the

vector reflects the importance of the information sources while, in the case of the OWA operators, the vector expresses

the importance of order statistics (notice that an OWA operator is a convex combination of order statistics).

There exist in the literature several constructions that simultaneously generalize the weighted means and the OWA

operators in the framework of Choquet integral (see, for instance, [2–4] for an analysis of some of them). Most of
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them consider functions parametrized by two weighting vectors, p for the weighted mean and w for the OWA operator,

so that we can recover the weighted mean when w � p1{n, . . . , 1{nq and the OWA operator when p � p1{n, . . . , 1{nq.

This approach has given rise to new families of functions such as the weighted ordered weighted averaging (WOWA)

operators [5], the semiuninorm-based ordered weighted averaging (SUOWA) operators [6, 7], the functions obtained

from the Crescent Method [8], and the Semi-SUOWA operators [9, 10].

An important aspect in building the aforementioned families is that they preserve the main characteristics of

weighted means and OWA operators, so that, for instance, they are able to discard extreme values (this is the case, for

instance, when trimmed or Winsorized means are considered as OWA operators) while each information source has

the desired weight.

However, in some constructions proposed in the literature, the vectors p and w do not play the desired role.

For instance, suppose four information sources, n � 4, and the weighting vectors p � p0.5, 0.2, 0.2, 0.1q and w �

p0, 0.5, 0.5, 0q. With the choice of p we want that the first information source has the same importance as the other three

together, while w is chosen for the purpose of discarding extreme values (in this case, the maximum and minimum

values). Consider now WOWA operators [5], which are the best-known generalizations of weighted means and OWA

operators. It is well known (see, for instance [11, 12]) that WOWA operators are Choquet integrals with respect to the

normalized capacities µQ
p,wpAq � Q p

°
iPA piq, where Q is a quantifier generating the weighting vector w.1 In order to

determine the importance of each information source, it is usual to employ an importance index (normally the Shapley

value [13]). The Shapley values can be found using the Kappalab R package [14], obtaining in our case:2

ϕ1
�
µQ

p,w
�
� 2{3, ϕ2

�
µQ

p,w
�
� ϕ3

�
µQ

p,w
�
� 2{15, ϕ4

�
µQ

p,w
�
� 1{15.

As can be seen, the weight of the first information source is double the sum of the other three together, instead of

equal, as desired. Concerning the use of w to discard the maximum and minimum values, notice that, for instance,

WQ
p,wp10, 6, 6, 6q � 8, WQ

p,wp0, 6, 6, 6q � 3,

that is, the maximum and minimum values are taken into account in the aggregation process.

Taking into account the above remarks, when using an operator it seems necessary to have a certain knowledge

about its behavior. In this sense, the study of the Shapley values and some tolerance indices has already been carried

out for some particular cases of SUOWA operators (see [15, 16]).

In a recent paper [8], the Crescent Method was proposed as a new methodology for obtaining games that simulta-

neously generalize those of the weighted means and OWA operators. Moreover, it has been shown that these games

are capacities when the weighting vector w is unimodal [9] (see also [17]).

In this paper we introduce a family of vectors that generalizes that of the unimodal weighting vectors and that

guarantees that the games obtained with the Crescent Method are capacities. Furthermore, we study these capacities

1The WOWA operator associated with p, w and Q will be denoted as WQ
p,w.

2We have considered that Q is obtained using a linear interpolation, which is the most usual method in the field of WOWA operators.

2



and give closed-form expressions for the Shapley values and some tolerance indices such as k-conjunctiveness and

k-disjunctiveness indices, and the veto and favor indices.3 Of special interest are the expressions obtained for the

Shapley values because they allow us to construct functions that give the desired weight to the information sources.

The remainder of the paper is organized as follows. In Section 2 we present basic concepts on Choquet integrals,

weighted means, OWA operators and several indices used in the study of Choquet integrals. In Section 3 we recall

the Crescent Method by using games associated with SUOWA operators and we introduce a family of vectors that

generalizes to that of the unimodal weighting vectors and that allows us to obtain capacities. In Section 4 we give the

main results of the paper while in Section 5 we show some particular cases of special interest. Section 6 is devoted

to illustrate the utility of these operators through two examples. Finally, some concluding remarks are provided in

Section 7.

2. Preliminaries

The following notation will be used throughout the paper: N denotes the set t1, . . . , nu, and Ac and |A| denote,

respectively, the complement and the cardinality of a subset A of N. Vectors are denoted in bold, η is the tuple

p1{n, . . . , 1{nq P Rn, and, for each k P N, ek denotes the vector with 1 in the kth coordinate and 0 elsewhere. Given

x P Rn, r�s and p�q denote permutations such that xr1s ¥ � � � ¥ xrns and xp1q ¤ � � � ¤ xpnq. For any a P R, tau and ras

denote, respectively, the floor and the ceiling of a; i.e., the largest integer smaller than or equal to a, and the smallest

integer larger than or equal to a.

2.1. Choquet integrals

Games and capacities play a central role in the framework of Choquet integrals. A game υ on N is a set function

υ : 2N ÝÑ R satisfying υp∅q � 0. Monotonic games are called capacities, and a capacity µ is normalized when

µpNq � 1.

One direct way to construct a capacity from a game is through its monotonic cover (see [18, 19]). The monotonic

cover of a game υ is the set function υ̂ defined by

υ̂pAq � max
B�A
υpBq.

It is easy to check that υ̂ is a capacity and, when υ is a capacity, υ̂ � υ . Moreover, υ̂ is a normalized capacity when

υpAq ¤ 1 for all A � N and there exists B � N with υpBq � 1.

The Choquet integral (see, for instance, [20–22]) with respect to a normalized capacity µ is the function Cµ :

Rn ÝÑ R given by

Cµpxq �
ņ

i�1

µpArisq
�

xris � xri�1s
�
,

3It is known that the orness degree of the functions obtained with the Crescent Method coincides with the orness degree of the OWA operator;

see [8].
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where Aris � tr1s, . . . , risu, and we use the convention xrn�1s � 0. Alternatively, the Choquet integral can be also

expressed as

Cµpxq �
ņ

i�1

�
µpArisq � µpAri�1sq

�
xris,

where we adopt the convention that Ar0s � ∅.

Two particular well-known cases of Choquet integral are the weighted means and the OWA operators, which are

defined by using weighting vectors. A weighting vector is a vector q P r0, 1sn such that
°n

i�1 qi � 1; and the set of

weighting vectors will be denoted byW.

The weighted mean Mp associated with a weighting vector p is the function

Mppxq �
ņ

i�1

pixi,

which is a Choquet integral with respect to the normalized capacity µppAq �
°

iPA pi. Analogously, the OWA operator

Ow associated with a weighting vector w is the function

Owpxq �
ņ

i�1

wixris,

which is a Choquet integral with respect to the normalized capacity µ|w|pAq �
°|A|

i�1 wi. Specific cases of OWA

operators are the order statistics. The kth order statistic OSk, which is defined by OSkpxq � xpkq, is the OWA operator

associated with the vector en�1�k; or, equivalently, Oek � OSn�1�k.

The dual of a game υ is the game υ defined by

υpAq � υpNq � υpAcq pA � Nq.

It is worth noting that if υ is a normalized capacity, then υ is also a normalized capacity given by

υpAq � 1 � υpAcq pA � Nq.

In the case of OWA operators, the dual of µ|w|, µ|w|, is given by µ|w|, where w is the dual of w; that is, w �

pwn,wn�1, . . . ,w1q (equivalently, wi � wn�1�i).

A prominent family of weighting vectors are the unimodal ones [23]. A weighting vector w is unimodal if there

exists an index k such that

w1 ¤ � � � ¤ wk�1 ¤ wk ¥ wk�1 ¥ � � � ¥ wn.

Notice that unimodal weighting vectors include, among others, nondecreasing (w1 ¤ � � � ¤ wn), nonincreasing

(w1 ¥ � � � ¥ wn), and centered weighting vectors [24].
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2.2. Indices for Choquet integrals

Several indices have been introduced in the literature in order to knowing the behavior of the functions used in the

aggregation processes. Among the wide variety of indices that exist, it is worth noting the orness degree, the Shapley

values and the tolerance indices. Although in this paper we will focus on Choquet integrals, it should be noted that

some of these indices can be defined in a more general context.

The orness degree can be seen as a measure of the closeness of a Choquet integral to the maximum; or equivalently,

a measure of the disjunctive character of the operator. It was proposed by Yager in the study of OWA operators [1]

and, later, generalized by Marichal to the field of Choquet integrals [25].

Definition 1. Let µ be a normalized capacity on N. The orness degree of Cµ is defined by4

ornesspµq �
1

n � 1

n�1̧

t�1

1�n
t

� ¸
T�N
|T |�t

µpT q.

The Shapley value [13, 26] was introduced in the field of cooperative games as a solution to the problem of

distributing the amount µpNq among the players. In the area of multiple criteria decision making (MCDM), it reflects

the global importance of each criterion.

Definition 2. Let j P N and let µ be a normalized capacity on N. The Shapley value of criterion j with respect to µ

is defined by

ϕ jpµq �
1
n

n�1̧

t�0

1�n�1
t

� ¸
T�Nzt ju
|T |�t

�
µpT Y t juq � µpT q

	
.

The concepts of k-conjunctive and k-disjunctive functions were introduced for determining the conjunctive/dis-

junctive character of aggregation functions [26] and they have been applied in the framework of SUOWA operators

[27]. k-conjunctive functions are bounded from above by the kth order statistic whereas k-disjunctive functions are

bounded from below by the pn � k � 1qth order statistic.

Definition 3. Let k P N and let µ be a normalized capacity on N.

1. Cµ is k-conjunctive if Cµ ¤ OSk; i.e., Cµpxq ¤ xpkq for any x P Rn.

2. Cµ is k-disjunctive if Cµ ¥ OSn�k�1; i.e., Cµpxq ¥ xpn�k�1q � xrks for any x P Rn.

The set of k-conjunctive (k-disjunctive) Choquet integrals will be denoted by Ck (Dk). k-conjunctive and k-

disjunctive Choquet integrals can be characterized through the values taken by the capacity on subsets of a given

cardinality [26].

4For the sake of simplicity, we use the notation ornesspµq instead of ornesspCµq. The same comment can be applied to other indices defined

later.

5



Proposition 1. Let k P N and let µ be a normalized capacity on N.

1. Cµ P Ck if and only if µpT q � 0 for all T � N such that |T | ¤ n � k.

2. Cµ P Dk if and only if µpT q � 1 for all T � N such that |T | ¥ k.

In the case of OWA operators we directly have the following result (see also [22, p. 30]).

Remark 1. Let k P N and w PW.

1. Ow P Ck if and only if wi � 0 for i � 1, . . . , n � k.

2. Ow P Dk if and only if wi � 0 for i � k � 1, . . . , n.

Given that k-conjunctive and k-disjunctive Choquet integrals are infrequent in practice, Marichal proposed two

indices for measuring the k-conjunctive and k-disjunctive character of Choquet integrals [26].

Definition 4. Given k P Nztnu and µ a normalized capacity, the k-conjunctiveness and k-disjunctiveness indices of

Cµ are defined by

conjkpµq � 1 �
1

n � k

n�ķ

t�1

1�n
t

� ¸
T�N
|T |�t

µpT q,

disjkpµq �
1

n � k

n�1̧

t�k

1�n
t

� ¸
T�N
|T |�t

µpT q.

Notice that ornesspµq � disj1pµq.

The concepts of veto and favor were proposed by Dubois and Koning in the area of the social choice functions

[28].

Definition 5. Let j P N and let µ be a normalized capacity on N.

1. j is a veto for Cµ if Cµpxq ¤ x j for any x P Rn.

2. j is a favor for Cµ if Cµpxq ¥ x j for any x P Rn.

As in the case of k-conjunctive and k-disjunctive Choquet integrals, veto and favor criteria are infrequent in

practice. For this reason Marichal introduced two indices to measure the degree with which a criterion behaves like a

veto or a favor [29].

Definition 6. Let j P N and let µ be a normalized capacity on N. The veto and favor indices of criterion j with

respect to µ are defined by

veto jpµq � 1 �
1

n � 1

n�1̧

t�1

1�n�1
t

� ¸
T�Nzt ju
|T |�t

µpT q,

favor jpµq �
1

n � 1

n�2̧

t�0

1�n�1
t

� ¸
T�Nzt ju
|T |�t

µpT Y t juq.
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The following relationship can be established among veto, favor and Shapley value of a criterion [29].

Remark 2. Let j P N and let µ be a normalized capacity on N. Then,

veto jpµq � favor jpµq � 1 �
nϕ jpµq � 1

n � 1
.

We finish this subsection showing that, once the indices defined above are known for a normalized capacity, it is

immediate to obtain those of its dual capacity (see, for instance, [22, 29]).

Remark 3. If j P N, k P Nztnu and µ is a normalized capacity on N, then

ornesspµq � 1 � ornesspµq, ϕ jpµq � ϕ jpµq,

conjkpµq � disjkpµq, veto jpµq � favor jpµq,

disjkpµq � conjkpµq, favor jpµq � veto jpµq.

3. The Crescent method

The Crescent method [8] has recently been introduced in the literature to obtain new games, using for this purpose

additive and symmetric capacities. In its original formulation, the game is obtained as a convex combination, through

the weighting vector p, of n previously constructed games. Later, the game obtained with the Crescent method has

been expressed as a two-piecewise function where the first piece coincides with a game associated with a SUOWA

operator and the second piece is the dual of a game also obtained in the context of SUOWA operators [30].

Definition 7. Let w, p PW. The game obtained with the Crescent method, ξp,w, is given by ξp,wp∅q � 0, ξp,wpNq � 1,

and when ∅ � A � N,

ξp,wpAq �

$''&''%
n
|A|
µppAqµ|w|pAq if µ|w|pAq ¤

|A|
n
,

ξp,wpAq � 1 � ξp,wpAcq if µ|w|pAq ¡
|A|
n
,

�

$'''''&'''''%

n
|A|

¸
jPA

p j

|A|̧

k�1

wk if
|A|̧

k�1

wk ¤
|A|
n
,

1 �
n

n � |A|

¸
jRA

p j

ņ

k�|A|�1

wk if
|A|̧

k�1

wk ¡
|A|
n
.

Remark 4. It is worth noting that, when ∅ � A � N, the game ξp,w can be also expressed as (see [30])

ξp,wpAq �

$'''''&'''''%

n
|A|

¸
jPA

p j

|A|̧

k�1

wk if
|A|̧

k�1

wk  
|A|
n
,

1 �
n

n � |A|

¸
jRA

p j

ņ

k�|A|�1

wk if
|A|̧

k�1

wk ¥
|A|
n
.
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An outstanding result on these games is that ξp,w is a capacity when the weighting vector w is unimodal [9]. This

result can be extended to a wider family of vectors. We are now going to establish the framework to introduce that

family of vectors.

Definition 8. Given w PW, we define the following elements:

Lw �

#
k P N |

1
k

ķ

i�1

wi  
1
n

+
, Lw �

#
k P N |

1
k

ķ

i�1

wi ¡
1
n

+
,

lw �

$'&'%
0, if Lw � ∅,

max Lw, otherwise,
lw �

$'&'%
n, if Lw � ∅,

min Lw, otherwise.

Although the elements Lw, lw, Lw, and lw were originally defined only for unimodal weighting vectors [23], they

can be defined for any weighting vector. Moreover, we have modified the definition of lw when Lw � ∅ (changing the

value from n � 1 to n) to make some proofs easier. For instance, the following lemma, that shows some relationships

between the indices lw and lw of a weighting vector and its dual, is given in a more compact form than in its original

formulation [9].

Lemma 1. Let w PW. Then

1. lw � lw � n.

2. lw � lw � n.

Proof. See the proof of Lemma 2 in [9], taking into account that now lw � n when Lw � ∅.

As we have previously commented, the game ξp,w is a capacity when the weighting vector w is unimodal. The

proof of this result is based on the following properties of unimodal weighting vectors [9]:

(P1) lw   lw.

(P2) If Lw � ∅, then Lw � t1, . . . , lwu.

(P3) If Lw � ∅, then Lw � tlw, . . . , n � 1u.

(P4) If p, q P N with p   q ¤ lw, then

1
p

p̧

i�1

wi ¤
1
q

q̧

i�1

wi.

(P5) If p, q P N with p   q ¤ lw, then

1
p

p̧

i�1

wi ¤
1
q

q̧

i�1

wi.

Note that (P1) is a consequence of (P2) and that (P4) implies (P2). Furthermore (P5) also implies (P3), since if

p ¡ lw, p � n, then n � p   n � lw � lw. Therefore

1
n � p

n�p̧

i�1

wi  
1
n
.
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But,

1
n � p

n�p̧

i�1

wi  
1
n
ô

ņ

i�n�p�1

wi ¡
p
n
ô

1
p

p̧

i�1

wi ¡
1
n
ô p P Lw.

Hence, properties (P1)–(P5) can be guaranteed when considering the following family of weighting vectors.

Definition 9. WØ
L

is the set of weighting vectors w that satisfy the following conditions:

(C1) If p, q P N with p   q ¤ lw, then

1
p

p̧

i�1

wi ¤
1
q

q̧

i�1

wi.

(C2) If p, q P N with p   q ¤ lw, then

1
p

p̧

i�1

wi ¤
1
q

q̧

i�1

wi.

Notice that (C2) can be written alternatively in terms of w: If p, q P N with p   q ¤ n � lw, then

1
p

p̧

i�1

wn�1�i ¤
1
q

q̧

i�1

wn�1�i.

Moreover, conditions (C1) and (C2) can be written in a more compact way if we use the vectors of means of w and w;

where, given a vector w, the vector of means w� is defined by

w� j �
1
j

j̧

i�1

wi, j � 1, . . . , n.

Hence, conditions (C1) and (C2) become, respectively, w�p ¤ w�q when p   q ¤ lw and w
�

p ¤ w
�

q when p   q ¤ lw.

Note also that the vector of means makes it easy to check whether a vector belongs to the setWØ
L

. For instance,

1. Consider w � p0.4, 0.2, 0.3, 0.1q. Then w� � p0.4, 0.3, 0.3, 0.25q, and lw � 0. On the other hand, w �

p0.1, 0.3, 0.2, 0.4q, w
�
� p0.1, 0.2, 0.2, 0.25q, and lw � 3. Since w

�

1 ¤ w
�

2 ¤ w
�

3, we have that w PWØ
L

.

2. Consider w � p0.4, 0.1, 0.4, 0.1q. Then w� � p0.4, 0.25, 0.3, 0.25q, and lw � 0. On the other hand, w �

p0.1, 0.4, 0.1, 0.4q, w
�
� p0.1, 0.25, 0.2, 0.25q, and lw � 3. Since w

�

2 ¡ w
�

3, we have that w RWØ
L

.

It is also worth noting thatWØ
L

is the set of weighting vectors w such that both w and w belong to the set

 
w PW | w�p ¤ w�q for any p   q ¤ lw

(
.

From this it follows that w PWØ
L

if and only if w PWØ
L

.

In addition to the unimodal weighting vectors, an outstanding family of vectors that belong to the set WØ
L

are

those that give rise to the Winsorized means (see Section 5).

Lastly, taking into account the previous comments we have the following results.
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Proposition 2. If p PW and w PWØ
L

, then ξp,w is a normalized capacity on N given by ξp,wp∅q � 0, ξp,wpNq � 1,

and when ∅ � A � N,

ξp,wpAq �

$'''''&'''''%
n
|A|

¸
jPA

p j

|A|̧

k�1

wk if |A|   lw,

1 �
n

n � |A|

¸
jRA

p j

ņ

k�|A|�1

wk if |A| ¥ lw,

�

$''''&''''%
n w�|A|

¸
jPA

p j if |A|   lw,

1 � n w
�

n�|A|

¸
jRA

p j if |A| ¥ lw.

Remark 5. According to Remark 4, when ∅ � A � N, the value ξp,wpAq can be also expressed in terms of lw as

follows:

ξp,wpAq �

$''''&''''%
n w�|A|

¸
jPA

p j if |A| ¤ lw,

1 � n w
�

n�|A|

¸
jRA

p j if |A| ¡ lw.

The Choquet integral with respect to ξp,w will be denoted by Cp,w.

4. The results

In this section we give the main results of the paper. In the first subsection we analyze the conjunctive/disjunctive

character of Cp,w while in the second subsection we give closed-form expressions for the veto and favor indices, and

the Shapley values.

The following remark will be useful in the proofs of some of the results established in the subsequent subsections.

Remark 6. Let p be a weighting vector. If t ¥ 1, then¸
T�N
|T |�t

¸
iPT

pi �

�
n � 1
t � 1


 ņ

i�1

pi �

�
n � 1
t � 1



�

�
n
t



t
n
,

¸
T�N
|T |�t

¸
iRT

pi �
¸

T�N
|T |�t

�
1 �

¸
iPT

pi



�

�
n
t



n � t

n
,

and, for any j P N,¸
T�Nzt ju
|T |�t

¸
iPT

pi �

�
n � 2
t � 1


 ņ

i�1
i� j

pi �

�
n � 2
t � 1



p1 � p jq �

�
n � 1

t



tp1 � p jq

n � 1
,

¸
T�Nzt ju
|T |�t

¸
iRT

pi �
¸

T�Nzt ju
|T |�t

�
1 �

¸
iPT

pi



�

�
n � 1

t


�
1 �

tp1 � p jq

n � 1



.
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4.1. Conjunctive/disjunctive character of Cp,w

The first result of this subsection shows that the k-conjunctive or k-disjunctive character of OWA operators is

preserved by Cp,w.

Proposition 3. Let w PWØ
L

.

1. If k P N and Ow P Ck, then Cp,w P Ck for any weighting vector p.

2. If k P N and Ow P Dk, then Cp,w P Dk for any weighting vector p.

Proof. The proofs are immediate taking into account Remark 1 and Propositions 1 and 2.

From the previous results it is immediately clear that the operator Cp,w is located between two order statistics

whenever the corresponding OWA operator also ranges between the same order statistics.

Corollary 1. Let w PWØ
L

such that there exist k, k1 P N with OSk ¤ Ow ¤ OSk1 . Then OSk ¤ Cp,w ¤ OSk1 for any

weighting vector p.

Regarding the k-conjunctiveness and k-disjunctiveness indices of Cp,w, the values of these indices coincide with

the respective indices of the OWA operator.

Proposition 4. Let w PWØ
L

and p PW. Then, for any k P Nztnu, we have

conjk
�
ξp,w

�
� conjkpµ|w|q, disjk

�
ξp,w

�
� disjkpµ|w|q.

Proof. Given w PWØ
L

, p PW and k P Nztnu, let q � minpn � k, lw � 1q. By Proposition 2 and Remark 6 we have:

1
n � k

n�ķ

t�1

1�n
t

� ¸
T�N
|T |�t

ξp,wpT q �

�
1

n � k

�
q̧

t�1

1�n
t

� ¸
T�N
|T |�t

n
t

� ţ

i�1

wi


¸
iPT

pi �
n�ķ

t�lw

1�n
t

� ¸
T�N
|T |�t

�
1 �

n
n � t

� ņ

i�t�1

wi


¸
iRT

pi


�

�
1

n � k

�
q̧

t�1

1�n
t

� n
t

� ţ

i�1

wi


�
n
t



t
n
�

n�ķ

t�lw

1�n
t

���n
t



�

n
n � t

� ņ

i�t�1

wi


�
n
t



n � t

n


�

�
1

n � k

�
q̧

t�1

ţ

i�1

wi �
n�ķ

t�lw

�
1 �

ņ

i�t�1

wi


�
�

1
n � k

n�ķ

t�1

ţ

i�1

wi

�
1

n � k

n�ķ

i�1

pn � 1 � k � iqwi.

Therefore

conjk
�
ξp,w

�
� 1 �

1
n � k

n�ķ

t�1

1�n
t

� ¸
T�N
|T |�t

ξp,wpT q � 1 �
1

n � k

n�ķ

i�1

pn � 1 � k � iqwi � conjkpµ|w|q.

On the other hand,

disjk
�
ξp,w

�
� conjk

�
ξp,w

�
� conjk

�
ξp,w

�
� conjkpµ|w|q � disjkpµ|w|q.
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4.2. Veto, favor and Shapley values

In this subsection we show closed-form expressions for the veto and favor indices,5 and the Shapley values. It is

worth noting that, although the expressions obtained for the veto and favor indices are complex, the expression for the

Shapley value is relatively simple.

Proposition 5. Let w PWØ
L

and p PW. Then, for any j P N, we have

veto jpξp,wq � 1�
1

n � 1

�
n� lw�

n
n � 1

�
p1� p jq

� lw�1̧

k�1

ķ

i�1

wi�
n�lw¸
k�1

ķ

i�1

wn�1�i



�pnp j�1q

n�lw¸
k�1

1
k

ķ

i�1

wn�1�i




.

Proof. By Proposition 2 and Remark 6 we have

lw�1̧

t�1

1�n�1
t

� ¸
T�Nzt ju
|T |�t

ξp,wpT q �
lw�1̧

t�1

1�n�1
t

� n
t

� ţ

i�1

wi


 ¸
T�Nzt ju
|T |�t

¸
iPT

pi �
n

n � 1
p1 � p jq

lw�1̧

t�1

ţ

i�1

wi.

Analogously,

n�1̧

t�lw

1�n�1
t

� ¸
T�Nzt ju
|T |�t

ξp,wpT q �
n�1̧

t�lw

1�n�1
t

� ¸
T�Nzt ju
|T |�t

�
1 �

n
n � t

� ņ

i�t�1

wi


¸
iRT

pi




�
n�1̧

t�lw

�
1 �

n
n � t

� ņ

i�t�1

wi


�
1 �

tp1 � p jq

n � 1





� n � lw �
n

n � 1

n�1̧

t�lw

� ņ

i�t�1

wi



n � 1 � t � tp j

n � t

� n � lw �
n

n � 1

n�lw¸
k�1

� ņ

i�n�k�1

wi


�
1 � p j �

np j � 1
k




� n � lw �
n

n � 1

�
p1 � p jq

n�lw¸
k�1

ķ

i�1

wn�1�i � pnp j � 1q
n�lw¸
k�1

1
k

ķ

i�1

wn�1�i



Now, taking into account that

veto jpξp,wq � 1 �
1

n � 1

� lw�1̧

t�1

1�n�1
t

� ¸
T�Nzt ju
|T |�t

ξp,wpT q �
n�1̧

t�lw

1�n�1
t

� ¸
T�Nzt ju
|T |�t

ξp,wpT q


,

we get the result.

We next give closed-form expressions for the Shapley values by using the relationship between the veto and favor

indices and the Shapley value (see Remark 2).

Theorem 1. Let w PWØ
L

and p PW. Then, for any j P N, we have

ϕ jpξp,wq �
1

n � 1

�
1 � p j � pnp j � 1qW



,

5The expression for the favor index is obtained from the veto index of the dual capacity (see Remark 3).
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where

W �
lw̧

k�1

w�k �
n�lw¸
k�1

w
�

k �
lw � lw

n
. (1)

Proof. Since favor jpξp,wq � veto jpξp,wq � veto jpξp,wq and lw � n � lw, by Proposition 5 we have

favor jpξp,wq � 1�
1

n � 1

�
lw �

n
n � 1

�
p1� p jq

� n�1�lw¸
k�1

ķ

i�1

wn�1�i �
lw̧

k�1

ķ

i�1

wi



� pnp j � 1q

lw̧

k�1

1
k

ķ

i�1

wi




.

Now, by using the notation

W 1 �
lw̧

k�1

w�k �
n�lw¸
k�1

w
�

k �
lw̧

k�1

1
k

ķ

i�1

wi �
n�lw¸
k�1

1
k

ķ

i�1

wn�1�i,

and taking into account that

lw�1̧

k�1

ķ

i�1

wi �
n�lw¸
k�1

ķ

i�1

wn�1�i �
n�1�lw¸

k�1

ķ

i�1

wn�1�i �
lw̧

k�1

ķ

i�1

wi �
lw�1̧

k�lw�1

ķ

i�1

wi �
n�1�lw¸

k�n�lw�1

ķ

i�1

wn�1�i

�
lw�1̧

t�lw�1

ţ

i�1

wi �
lw�1̧

t�lw�1

n�ţ

i�1

wn�1�i �
lw�1̧

t�lw�1

� ţ

i�1

wi �
ņ

i�t�1

wi



� lw � lw � 1,

we have

ϕ jpξp,wq �
1 � pn � 1qpveto jpξp,wq � favor jpξp,wq � 1q

n

�
lw � lw

n
�

1
n � 1

�
p1 � p jqplw � lw � 1q � pnp j � 1qW 1



�

1
n � 1

�
n � 1

n
plw � lwq � p1 � p jqplw � lwq � 1 � p j � pnp j � 1qW 1



�

1
n � 1

��
p j �

1
n



plw � lwq � 1 � p j � pnp j � 1qW 1



�

1
n � 1

�
1 � p j � pnp j � 1qW



.

In the following proposition we show some properties of the value W, which will be useful in the proof of some

later results.

Proposition 6. Let w PWØ
L

and

W �
lw̧

k�1

w�k �
n�lw¸
k�1

w
�

k �
lw � lw

n
.

Then:

1. W ¥ 1{n, and W � 1{n if and only if w � ek for some k P N.

2. W ¤ 1, and W � 1 if and only if w � η.

Proof.
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1. Since lw ¡ lw we have W ¥ 1{n. Moreover, W � 1{n if and only if lw � lw � 1, wi � 0 for any i P t1, . . . , lwu,

and wn�1�i � 0 for any i P t1, . . . , n � lwu (that is, wi � 0 for any i P tlw � 1, . . . , nu). Therefore, W � 1{n if

and only if there exists k P N such that w � ek.

2. Notice that if k P t1, . . . , n � lwu, then n � k P tlw, . . . , n � 1u � Lw. From the definition of Lw we have that

1
n � k

n�ķ

i�1

wi ¡
1
n
ô 1 �

ņ

i�n�k�1

wi ¡
n � k

n
ô

ņ

i�n�k�1

wi  
k
n
ô

1
k

ķ

i�1

wn�1�i  
1
n
.

Therefore,

W ¤ lw
1
n
� pn � lwq

1
n
�

lw � lw
n

� 1.

Notice also that if lw ¡ 0 or lw   n then W   1, or equivalently, if W � 1 then lw � 0 and lw � n; that is,

w � η.

Notice that the Shapley value can be expressed as

ϕ jpξp,wq �
1

n � 1

�
1 � p j � pnp j � 1qW

	
�

1
n � 1

�
p jpnW � 1q � 1 � W

	
(2)

�
nW � 1
n � 1

p j �
�

1 �
nW � 1
n � 1

	1
n
, (3)

and given that, from Proposition 6 we get that 0 ¤ pnW � 1q{pn� 1q ¤ 1, we have that the Shapley value is a convex

combination between p j and 1{n, which are the Shapley values of the capacities of the weighted mean Mp and any

OWA operator, respectively. This means that the Shapley value is less than p j when p j ¡ 1{n, and greater than p j

when p j   1{n. Note also that ϕ jpξp,wq � p j for any j P N and any weighting vector p if and only if W � 1; that is,

when w � η.

On the other hand, since the Shapley values allow us to know the global importance of each criterion, it is essential

to be able to determine the weights that allow us to obtain Shapley values previously fixed. Hence, when W � 1{n,

from expression (2) we can give the weight p j in terms of ϕ jpξp,wq:

p j �
pn � 1qϕ jpξp,wq � W � 1

nW � 1
.

From the above expression it is easy to check that p j ¥ 0 if and only if ϕ jpξp,wq ¥
1�W
n�1 , and that

°n
j�1 p j � 1.

Thus, we have the following corollary.

Corollary 2. Let pϕ1, . . . , ϕnq be a weighting vector and let w P WØ
L

such that w � ek for any k P N. Then the

following conditions are equivalent:

1. min
jPN
ϕ j ¥

1 � W
n � 1

.

2. The vector p defined by

p j �
pn � 1qϕ j � W � 1

nW � 1
, j � 1, . . . , n,

is a weighting vector such that ϕ jpξp,wq � ϕ j for any j P N.
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5. Particular cases

The results given in the previous section are valid for any weighting vector w that belongs toWØ
L

. Within this set

there are several very interesting families of vectors that will be studied in more detail below. The first two families

encompass nondecreasing and nonincreasing weighting vectors, respectively:

1. If w is a weighting vector different from en such that the vector w� is nondecreasing, then lw � n, and w PWØ
L

.

By Proposition 2,

ξp,wpAq � n w�|A|

¸
jPA

p j

for any A � N, A � ∅, and the thesis of Corollary 2 is valid, being

W �
lw̧

k�1

w�k �
n � lw

n
�

ņ

k�1

w�k,

that is, W is the sum of the components of the vector w�. Notice that the last equality is fulfilled because, when

k ¡ lw, we have w�k � 1{n.

2. A similar result can be obtained for any weighting vector w such that its dual satisfies the above conditions.

In this case, the result can be written as follows. If w is a weighting vector different from e1 such that w
�

is

nondecreasing (or, equivalently, the sequence
�

1
n�k�1

°n
i�k wi

�n
k�1 is nonincreasing), then lw � 0 and w PWØ

L
.

By Remark 5,

ξp,wpAq � 1 � n w
�

n�|A|

¸
jRA

p j

for any A � N, and the thesis of Corollary 2 is valid, being

W �
n�lw¸
k�1

w
�

k �
lw

n
�

ņ

k�1

w
�

k.

Now we analyze the families of vectors that give rise to Winsorized ([31, 32]) and trimmed means. For this, we

consider the following set:

R � tpr, sq P t0, 1, . . . , n � 1u2 | r � s ¤ n � 1u.

The weighting vectors that give rise to the Winsorized means are defined as follows.

Definition 10. Given pr, sq P R, the weighting vector wpr,sq is defined by

wpr,sq
i �

$''''''''''''&''''''''''''%

0 if i � 1, . . . , s,

s�1
n if i � s � 1,

1
n if i � s � 2, . . . , n � r � 1,

r�1
n if i � n � r,

0 otherwise,

15



when r � s ¤ n � 2, and wpr,sq � es�1 when r � s � n � 1.

It is easy to check that lwpr,sq � s, lw
pr,sq

� n � r, and wpr,sq P WØ
L

(notice also that wpr,sq is not unimodal when

r � s ¤ n � 3 and minpr, sq ¥ 1). Therefore, for any weighting vector p, ξp,wpr,sq is a normalized capacity on N given

by

ξp,wpr,sqpAq �

$'''''''&'''''''%

0, if |A| ¤ s,

°
iPA pi, if s   |A|   n � r,

1, if |A| ¥ n � r.

The Choquet integral with respect to ξp,wpr,sq is the pr, sq-fold Winsorized weighted mean (see [23, 33]), which is

defined by

Mpr,sq
p pxq �

�
ş

i�1

pris

�
xrs�1s �

n�ŗ

i�s�1

prisxris �

�
ņ

i�n�r�1

pris

�
xrn�rs.

Notice that in these operators, the s highest values and the r lowest values of a vector of values x are replaced by

xrs�1s and xrn�rs, respectively, and after that, the weighted mean associated with a weighting vector p is considered.

They are the natural generalization of the Winsorized means and were obtained in the framework of the SUOWA

operators by using the weighting vector wpr,sq and the semiuninorm Umax
min .

Regarding the Shapley value, notice that W � pn � r � sq{n and, therefore, expression (3) becomes

ϕ jpξp,wq �

�
1 �

r � s
n � 1



p j �

r � s
n � 1

1
n
.

The trimmed means are obtained using the following family of weighting vectors.

Definition 11. Given pr, sq P R, the weighting vector rwpr,sq is defined by

rwpr,sq
i �

$''''&''''%
0 if i � 1, . . . , s,

1
n�pr�sq if i � s � 1, . . . , n � r,

0 otherwise.

Notice that the weighting vectors rwpr,sq are unimodal, and that, when minpr, sq ¥ 1, we have l
rwpr,sq �

Q
ns

r�s

U
� 1,

and lrw
pr,sq

�
Y

ns
r�s

]
� 1 (see [23]).6 Therefore, according to Proposition 2, for any weighting vector p and pr, sq P R

6Note that when minpr, sq   1, the vector rwpr,sq belongs to one of the families seen above. Specifically, when s � 0 and r ¥ 1, the vector

rwpr,sq is nonincreasing with rwpr,sq
1 ¡ 1{n. Therefore l

rwpr,0q � 0, and lrw
pr,0q

� 1. When s ¥ 1 and r � 0, the vector rwpr,sq is nondecreasing with

rwpr,sq
1   1{n. Therefore l

rwpr,0q � n� 1, and lrw
pr,0q

� n. When s � 0 and r � 0, rwp0,0q � η; hence l
rwp0,0q � 0, and lrw

p0,0q
� n.
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with minpr, sq ¥ 1, ξp,rwpr,sq is a normalized capacity on N given by

ξp,rwpr,sqpAq �

$'''''''''''&'''''''''''%

0, if |A| ¤ s,

n
n�pr�sq

|A|�s
|A|

°
iPA pi, if s   |A| ¤

Y
ns

r�s

]
,

1 � n
n�pr�sq

n�pr�|A|q
n�|A|

°
iRA pi, if

Y
ns

r�s

]
  |A|   n � r,

1, if |A| ¥ n � r.

It is worth noting that, although in this case it is also possible to obtain an expression for W (through the for-

mula (1)), its complexity makes it of little interest.

6. Examples

In this section we will illustrate the utility of the results obtained in the previous sections through two examples.

In the first of them we will show the advantages of the proposed functions over weighted means and OWA operators,

while in the second one we will make a comparison with other existing methods in the literature.

Example 1. Consider the following example taken from [27] (see also [33]). Suppose that the Department of Math-

ematics in a Faculty of Economics offers a grant for the students accepted into the M. Sc. in Economics. Three

candidates are evaluated with respect to seven subjects: Mathematics I (MatI), Mathematics II (MatII), Mathematics

III (MatIII), Statistics I (StaI), Statistics II (StaII), Econometrics I (EcoI), and Econometrics II (EcoII); and the marks

obtained by them (given on a scale from 0 to 10) are collected in Table 1.

Table 1: Marks of the candidates in the considered subjects.

Student MatI MatII MatIII StaI StaII EcoI EcoII

A 7.9 7.8 7.7 9.8 7.5 7.6 7.4

B 7.7 7.8 7.9 5.2 8.3 8.4 8.5

C 8.2 8.4 8.5 5.2 7.7 7.8 7.9

When evaluating the candidates, the members of the committee would like to take into account the following

aspects:

1. Each one of the first three subjects is considered twice as important as each one of the remaining four.

2. Minimum and maximum marks should be discarded to avoid bias.7

7Extreme marks may be due to the fact that students may have copied answers, or they may have been ill, or the same subject may have been

taught by different teachers, etc. For instance, student A gets its highest grade in Statistics I whereas B and C get their lowest marks. Furthermore,

these marks are also very different from those obtained in the other subjects, so it seems reasonable that they be ruled out.
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The first requirement corresponds to a weighted mean type aggregation where p � p0.2, 0.2, 0.2, 0.1, 0.1, 0.1, 0.1q

whereas the second one corresponds to an OWA type aggregation where wp1,1q � p0, 2{7, 1{7, 1{7, 1{7, 2{7, 0q (in the

case of Winsorized means) or rwp1,1q � p0, 0.2, 0.2, 0.2, 0.2, 0.2, 0q (in the case of trimmed means).

In Table 2 we show the score given to the students by the weighted mean, the OWA operators, and the operators

obtained from the Crescent Method by using p, wp1,1q, and rwp1,1q; that is, Cp,wp1,1q and Cp,rwp1,1q .

Table 2: Global evaluation of the candidates by using some aggregation operators.

Student Mp Owp1,1q O
rwp1,1q Cp,wp1,1q Cp,rwp1,1q

A 7.91 7.7 7.7 7.73 7.7256

B 7.72 8.0285714 8.02 7.96 7.9583

C 7.88 8.0142857 8 8.11 8.082

As can be seen from Table 2, the winners with the weighted mean and the OWA operators are A and B, respectively.

Instead, student C is the winner when Cp,wp1,1q or Cp,rwp1,1q are used. Notice that, according to the data of Table 1, the

choice of student C seems the most suitable for taking into account both the importance of the subjects and the lack

of bias.

As we have seen in the previous sections, the Shapley values of Cp,wp1,1q and Cp,rwp1,1q may not coincide with the

weights of the vector p. In fact, from expressions (1) and (3) we can get the Shapley values of these operators, which

are collected in Table 3.8

Table 3: Shapley values of Cp,wp1,1q and Cp,rwp1,1q .

Operator ϕ1, ϕ2, ϕ3 ϕ4, ϕ5, ϕ6, ϕ7

Cp,wp1,1q 0.1809523 0.1142857

Cp,rwp1,1q 0.17396825 0.11952380

As expected from comments made in Section 4, the Shapley values of the first three subjects are less than 0.2 (given

that 0.2 ¡ 1{7) while the Shapley values of the remaining subjects are greater than 0.1 (given that 0.1   1{7). Since

the Shapley values reflect the global importance of each subject, the vector p should be chosen so that the Shapley

values are 0.2 for the first three subjects and 0.1 for the remaining subjects. This can be done through Corollary 2,

8The values of W are W � 5{7 for wp1,1q, and W � 64{105 for rwp1,1q.
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and we obtain the vector p1 for wp1,1q and p2 for rwp1,1q, where

p1i �

$'&'%
32

140 , if i � 1, 2, 3,

11
140 , otherwise,

p2i �

$'&'%
85
343 , if i � 1, 2, 3,

22
343 , otherwise.

Table 4 shows the score obtained by the candidates using the previous vectors. Note that the differences of

C’s scores with those of the other students have increased because C achieves his best marks in the subjects with

the greatest weights (which previously did not have a Shapley value of 0.2). It is also important to note that, in this

example, the results obtained through the functions Cp1,wp1,1q and Cp2,rwp1,1q are very similar, so it seems more appropriate

to use Cp1,wp1,1q for simplicity.

Table 4: Global evaluation of the candidates by using the weighting vectors p1 and p2.

Student Cp1,wp1,1q Cp2,rwp1,1q

A 7.745 7.74714285

B 7.92571428 7.906734. . .

C 8.157857142 8.150612. . .

Example 2. Consider the following example taken from [4]. Suppose a selection committee made up of six members:

three professors from distinct research fields, two other academics, and the head of department as the chair. The

opinions of the committee members are weighted using the vector p � p2{11, 2{11, 2{11, 1{11, 1{11, 3{11q. Besides,

suppose the professors want to strengthen their research team by what they could give extreme scores in order to

favor applicants conducting research in their area. To avoid this bias, an OWA type aggregation should be used in

order to rule out extreme values. The OWA operator proposed for this purpose is the one associated with the vector

w � p0, 0.25, 0.25, 0.25, 0.25, 0q (note that this OWA operator is also known in the literature as a trimmed mean).

Table 5, given in [4], shows the scores assigned by the committee members to five applicants,9 together with the

overall score obtained through three families of functions (see [4] for more details).

It is important to note that the choice of the weighting vector w was made in order to discard extreme values (in

this case the maximum and minimum values). However, as it has been pointed out in [4] and it can be seen in Table 5,

none of the analyzed methods rule out extreme scores.10

For its part, the weighting vector p was chosen in order to reflect the importance of each committee member. But,

in the framework of Choquet integral, this value is determined by means of an importance index (usually the Shapley

9Boldface values indicate outliers.
10Notice that in this example the scores of each applicant are all the same except one (the outlier), so the global score would be expected to

match them. However, this is not the case (see, for instance, applicant E).
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Table 5: Individual evaluations and overall score obtained by the applicants.

Applicant Evaluations PnTA WOWA Implicit

A p1, 0, 1, 1, 1, 1, q 1 0.98 0.85

B p1, 0.5, 0.5, 0.5, 0.5, 0.5q 0.5 0.5 0.57

C p0.8, 0.8, 0, 0.8, 0.8, 0.8q 0.8 0.78 0.68

D p0.8, 0.8, 0.8, 0, 0.8, 0.8q 0.8 0.8 0.8

E p0.8, 0.8, 0.8, 0.8, 0.8, 0q 0.65 0.67 0.68

value). Given that in the PnTA method the capacities are unknown and the implicit method is not based on Choquet

integrals, we only calculate the Shapley values for WOWA operators. As in the Introduction section of this paper, we

consider that the quantifier Q is obtained using a linear interpolation and the Shapley values are found through the

Kappalab R package [14]:

ϕ1
�
µQ

p,w
�
� ϕ2

�
µQ

p,w
�
� ϕ3

�
µQ

p,w
�
� 0.1742, ϕ4

�
µQ

p,w
�
� ϕ5

�
µQ

p,w
�
� 0.083, ϕ6

�
µQ

p,w
�
� 0.3106.

Note that the values 0.1742 and 0.083 are relative close to 2{11 � 0.18 and 1{11 � 0.09, respectively. However,

the Shapley value of the sixth member of the committee differs considerably from what is desired (the error made is

13.9%). Therefore, regarding the weighting of the committee members, the behavior of the WOWA operators is not

fully satisfactory either.

Now let us see what happens with the operator obtained from the Crescent Method. Notice that the weighting

vector w � p0, 0.25, 0.25, 0.25, 0.25, 0q PWØ
L

and OS2 ¤ Ow ¤ OS5. Therefore, according to Corollary 1, we have

OS2 ¤ Cp,w ¤ OS5 for any weighting vector p; that is, the operator Cp,w discards the maximum and minimum values,

which was the goal for which the vector w was chosen. Hence, in this example, when x is a vector where all the

scores except one are the same (see Table 5), we get Cp,wpxq � OS2pxq � OS5pxq. Therefore, the scores obtained by

applicants A, B, C, D, and E are 1, 0.5, 0.8, 0.8, and 0.8, respectively.

In relation to the weighting given to the committee members, the Shapley values of Cp,w can be obtained from

expressions (1) and (3):

ϕ1pξp,wq � ϕ2pξp,wq � ϕ3pξp,wq � 0.1742, ϕ4pξp,wq � ϕ5pξp,wq � 0.1287, ϕ6pξp,wq � 0.2196.

Notice that the Shapley values of the last three committee members are not what would be desired. However, in this

case, given that we know the expressions that relate the Shapley values to the weighting vectors p (Corollary 2), we

can obtain a weighting vector p1 so that the Shapley values of Cp1,w are p2{11, 2{11, 2{11, 1{11, 1{11, 3{11q. This

vector is p1 � p13{66, 13{66, 13{66, 1{66, 1{66, 25{66q. So, the operator Cp1,w meets the set requirements: it allows

to discard extreme values and gives each member of the committee the desired weight.
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7. Conclusion

There are several methods in the literature that allow us to build functions from two weighting vectors, p and

w, where the first one allows weighting of the information sources, while the second one is used for an OWA type

aggregation. However, on some occasions, the vectors p and w do not have the desired role in the obtained functions.

Hence, it is essential to know the relationship between the weights that the function gives to the information sources

and the weighting vector p, or make sure that the function discards extreme values when the vector w corresponds to

a trimmed or Winsorized mean.

In this paper we have analyzed the conjunctive/disjunctive character of Cp,w (that is, the Choquet integral with

respect to the capacity ξp,w), and we have seen that Cp,w maintains the k-conjunctive/k-disjunctive character of Ow. Be-

sides, we have also given closed-form expressions of several indices such as k-conjunctiveness and k-disjunctiveness

indices, the veto and favor indices, and the Shapley values. The usefulness of the results obtained has been illustrated

through two examples in Section 6. In the first example we have shown the advantages of the proposed functions over

weighted means and OWA operators while in Example 2 we have made a comparison with other methods proposed

in the literature. As it has been seen in this last example, the functions studied in this paper allow both to discard ex-

treme values and to give the information sources the desired weight, which is not the case with the remaining methods

analyzed in the example.
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