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Abstract

In this paper we introduce a new group decision procedure that follows a recursive
pattern. In the first stage, the members of a group show their opinions on all the
individuals of that group, regarding a specific attribute, by means of assessments within
the unit interval. Taking into account this information, some aggregation operators
and a family of thresholds, a subgroup of individuals is selected: those members whose
collective assessment reach a specific threshold. Now only the opinions of this qualified
subgroup are taken into account and a new subgroup emerges in the implementation of
the aggregation phase. We analyze when this recursive procedure converges providing
a final subgroup of qualified members, taking into account some extended OWAs.

Keywords: Group decision making; OWA operators; aggregation; qualification.

1 Introduction

In some occasions a group of individuals has to select a subgroup for doing a task or
regarding an attribute. This is the case of a group of experts that has to decide which
members should participate in a concrete task. Another possibility consists on determining
which members of a society are the best for constituting a committee. There exist in the
literature some works where the problem arises in choosing the members of the society
satisfying a social identity (see Kasher and Rubinstein [9]), or with respect to a general
attribute (see Samet and Schmeidler [11]). We note that in these mentioned papers, only
dichotomous assessments are allowed.

Aggregation operators allow us to generate a collective assessment to each individual of the
group taking into account the individual opinions (see Fodor and Roubens [5], Grabisch,
Orlovski and Yager [6] and Calvo, Kolesárova, Komorńıková and Mesiar [3], among others).
A simple way of selecting a subgroup can be done by means of thresholds or quota: all the
members reaching the quota have to be chosen.

Typically, those members enrolled in this conformed category have more valuable opinions
about the task or topic under discussion. It seems therefore reasonable to choose a stable
group, i.e., a group such that when considering their assessments on all society members,
they would select themselves, and only themselves, for the task. To analyze the possibility
of arriving to stable subgroups, in this paper we consider a sequential procedure where in
each stage a subgroup is selected, and taking the opinions of this subgroup a new subgroup
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emerges. We analyze when this procedure converges to a final set of selected individuals.
For extra analysis of this procedure, see Ballester and Garćıa-Lapresta [1, 2].

Among the large variety of aggregation operators, in this paper we have considered OWA
(“Ordered Weighted Averaging”) operators (Yager [12]); a wide study can be found in Yager
and Kacprzyk [13]. See Fodor and Roubens [5, 5.8] and Calvo, Kolesárova, Komorńıková
and Mesiar [3, 4.2] as well.

The paper is organized as follows. In Section 2 we introduce the framework for developing
the group decision procedure we analyze in the paper. Section 3 includes some important
families of collective evaluation mechanisms suitable for the recursive decision problem. In
Section 4 we show the results of the paper. Section 5 shows some illustrative examples and
Section 6 contains some conclusions.

2 Preliminaries

Consider a finite set of individuals N = {1, 2, . . . , n} with n ≥ 2. We use 2N to denote the
power set of N , i.e., the set of all the subsets of N , and |S| is the cardinal of S. A profile
is an n× n matrix

P =




p11 · · · p1j · · · p1n

· · · · · · · · · · · · · · ·
pi1 · · · pij · · · pin

· · · · · · · · · · · · · · ·
pn1 · · · pnj · · · pnn




with values in the unit interval, where pij is the assessment with which the individual i

evaluates individual j as being qualified to belong to the committee in question. The set
of profiles is denoted by P. Given a subset of individuals S ⊆ N , PS denotes the |S| × n

submatrix of P composed by those i−rows with i ∈ S. Given j ∈ N , we denote by P j
S the

j-th column vector of PS . Finally, we denote by σ( P j
S ) a permutation of vector P j

S such
that opinions are ordered from best to worst; and [σ( P j

S )]i denotes the i-th component of
σ( P j

S ).

Definition 1 A Committees’ Evaluation Mechanism (CEM) is a family of functions {vS},
with ∅ 6= S ⊆ N , where vS : P × N −→ [0, 1] is a function that, given P ∈ P, assigns a
collective assessment vS(P, j) ∈ [0, 1] to each individual j ∈ N in such a way that vS(P, j) =
vS(Q, j) for all P, Q ∈ P satisfying P j

S = Qj
S.

According to the previous definition, the collective assessment that the subgroup S provides
to individual j, vS(P, j), only depends on the individual assessments of S on the individual
j.

A CEM determines individual qualification only in gradual terms. A very natural way to
convert a gradual opinion into a dichotomic assessment is by means of thresholds or quotas.
An individual is qualified if the collective assessment is above a fixed quota.

Definition 2 A family of values {αS}, ∅ 6= S ⊆ N , and αS ∈ (0, 1] for every S, is called
a Threshold Mechanism (TM).
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Given a CEM {vS} and a TM {αS}, the family of functions {VS}, with S ⊆ N , where
VS : P −→ 2N is the function that, given P ∈ P, qualifies a new subgroup VS(P ) as
follows:

VS(P ) =

{
{j ∈ N | vS(P, j) ≥ αS}, if S 6= ∅,
∅, otherwise.

The family of functions {VS} is called the Committees’ Qualification Mechanism (CQM)
associated with {αS} and {vS}.

Definition 3 Given a CQM {VS}, the sequence {St}, where S1 = N and St+1 = VSt(P ),
is called committees’ sequence. A committees’ sequence is said to be convergent if {St}
has a limit lim St (and it is also said that the sequence converges to limSt). The CQM is
said to be convergent if for any P ∈ P the committees’ sequence generated is convergent.

Notice that, since society is a finite set, chain convergence can also be expressed as: there
exists a positive integer q such that St = Sq for every t ≥ q.

Figure 1 shows in a nutshell the main components of a sequential process of evaluation.

CEM TM
↘ ↙

CQM
↘

C. sequence −→ Limit set
↗

Profile

Figure 1. Iterative procedure.

3 Describing families of CEMs

In this section, we focus our attention on how general aggregations operators and classes of
extended OWAs can be used in the recursive procedure introduced in the previous section.

3.1 The use of aggregation operators to construct CEMs

In some occasions, aggregation operators are defined for a given number of individual opin-
ions. Notice however that for our model to apply, we have to consider collections of oper-
ators, one for each possible subgroup of individuals in society. There are multiple options
to consider here, and it is our purpose to analyze general classes of operators. For the sake
of a more intuitive analysis, we adopt here the following two assumptions about CEMs to
be used:

SE Self-Exclusion: When an individual had to decide on herself, she will exclude her
opinion when possible (i.e., she is not the only reviewer).
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CS Cardinality-Symmetry : When the same number of opinions have to be aggregated, the
same operator will be applied (independently of the names of the reviewers).

Both of them could be eliminated without altering significatively the results, but we consider
this model more natural.

3.2 OWAs

A broad family of operators that makes sense in an aggregation process is that of OWAs.

Definition 4 The OWA operator of dimension p associated with the weighting vector
(wp

1, . . . , w
p
p) ∈ [0, 1]p such that wp

1 + · · · + wp
p = 1 is the function wp : [0, 1]p −→ [0, 1]

defined by
wp(a1, . . . , ap) = wp

1 · b1 + · · ·+ wp
p · bp,

with bi the i-th largest of the a1, . . . , ap.

The notion of extended aggregation functions and extended OWAs (see Mayor and Calvo
[10] and Calvo and Mayor [4]) becomes useful for our purposes.

Definition 5 An Extended OWA (EOWA) operator is a family of OWA operators {wp}
where wp is an OWA of dimension p with associated weights (wp

1, . . . , w
p
p) ∈ [0, 1]p such

that wp
1 + · · ·+ wp

p = 1.

We now formally explicit how an EOWA can be considered a CEM following the assumptions
SE and CS. This can be done by considering, for every ∅ 6= S ⊆ N :

1. The OWA of dimension |S|, w|S|, applied to P j
S , if j 6∈ S.

2. The OWA of dimension |S| − 1, w|S|−1, applied to P j
S\{j}, if j ∈ S 6= {j}.

3. The OWA of dimension 1, w1, i.e., the identity, applied to P j
{j} = pjj , if S = {j}.

It could be seem reasonable to impose certain conditions about the consistency of the
threshold values and EOWAs across committees. However, we initially avoid such conditions
in order to present the most general results. As it will be shown in Section 4, convergence is
close related to the chosen families and therefore, the imposition of consistency conditions
could help to get new insights for our recurrent model.

The following examples explicit relevant families of EOWAs.

Example 1 The maximum or best aggregator can be defined, for any p, through the weights

(wp
1, . . . , w

p
p) = (1, 0, . . . , 0, 0).

The associated CEM {bS} is described in Table 1.
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Table 1: CEM associated with the best aggregator

Cases CEM: bS(P, j)

(1) j /∈ S max{pij | i ∈ S}
(2) j ∈ S 6= {j} max{pij | i ∈ S \ {j}}
(3) S = {j} pjj

The associated CQM {BS} is defined by

j ∈ BS(P ) ⇔ bS(P, j) ≥ αS .

The minimum or worst aggregator has as associated weights: (wp
1, . . . , w

p
p) = (0, 0, . . . , 0, 1).

The associated CEM and CQM are denoted by {wS} and {WS}, respectively.

The median aggregator has weights

• wp
p+1
2

= 1 and wp
i = 0 otherwise, whenever p is odd.

• wp
p
2

= wp
p
2
+1

= 0.5 and wp
i = 0 otherwise, whenever p is even.

The associated CEM and CQM are denoted by {mS} and {MS}, respectively.

The description of the associated CEMs {wS} and {mS} , and the CQMs {WS} and
{MS}, follows a similar pattern to that of the maximum in Table 1 and thus we omit them.

Example 2 The average aggregator can be defined, for any p through the weights

(wp
1, . . . , w

p
p) =

(
1
p , . . . , 1

p

)
.

The associated CEM {aS} is described in Table 2.

The associated CQM {AS} is defined by

j ∈ AS(P ) ⇔ aS(P, j) ≥ αS .

Example 3 The olympic aggregator can be defined, when p ≥ 3, through the weights
wp

1 = wp
p = 0 and wp

i = 1
p−2 otherwise. For the cases p = 1, 2 we use as a natural

extension the average aggregator. The associated CEM {oS} is described in Table 3.

The associated CQM {OS} is defined by

j ∈ OS(P ) ⇔ oS(P, j) ≥ αS .
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Table 2: CEM associated with the average aggregator

Cases CEM: aS(P, j)

(1) j /∈ S
1
|S|

∑

i∈S

pij

(2) j ∈ S 6= {j} 1
|S| − 1

∑

i∈S\{j}
pij

(3) S = {j} pjj

4 The results

In this section we provide some necessary and sufficient conditions for the convergence of
CQMs based on EOWAs. We pay special attention to CQMs based on examples provided
in Section 3.

In our first result, we present a very soft necessary condition for the convergence of the
CQM derived from the use of EOWAs.

Proposition 1 Let {VS} be a CQM associated with an EOWA {wp} and a TM {αS}. If
there exists a dimension u ≤ n− 1 such that wu

1 = 0, then {VS} is not convergent.

Proof: Suppose there exists a dimension u ≤ n−1 such that wu
1 = 0. Consider a subgroup

of the society U such that |U | = u, where it is clear that u > 1. Let U = {i1, . . . , iu} and
the profile P defined by:

pij =
{

1, if (i = i1 and j ∈ U) or j = i1,
0, otherwise.

Depending on the value of αN and the EOWA {wn}, it will be either S2 = {i1} or S2 = U .
It is straightforward to see that V{i1}(P ) = U . Whenever the committee is U , the opinion
of i1 is considered with a weight of wu

i = 0 and therefore, VU (P ) = {i1}. Thus, the CQM
{VS} is not convergent.

The previous result allows us to discuss the instability of a broad family of OWAs.

Corollary 1 If n ≥ 4, given any TM {αS}, the CQMs {WS}, {MS} and {OS} are not
convergent. If n ≥ 3, the result still holds for {WS}.

Proof: All the presented EOWAs have w3
1 = 0. Given the fact that n ≥ 4 and Proposition

1, the result is straightforward.

We now provide sufficient conditions for ensuring the convergence of CQMs based on
EOWAs.
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Table 3: CEM associated with the olympic aggregator

Cases CEM: oS(P, j)

(1a) j /∈ S and |S| > 2
1

|S| − 2

(∑

i∈S

pij −min{pij | i ∈ S}

−max{pij | i ∈ S}
)

(1b) j /∈ S and |S| ≤ 2
1
|S|

∑

i∈S

pij

(2a) j ∈ S and |S| > 3
1

|S| − 3

( ∑

i∈S\{j}
pij

−min{pij | i ∈ S \ {j}}
−max{pij | i ∈ S \ {j}}

)

(2b) j ∈ S and |S| ∈ {2, 3} 1
|S| − 1

∑

i∈S\{j}
pij

(3) S = {j} pjj

Proposition 2 Let {VS} be a CQM associated with an EOWA {wp} and a TM {αS}. If
the following two conditions are satisfied:

1. For all positive integers m,u, v such that m ≤ u ≤ v it holds

m∑

i=1

wu
i ≥

u

v

m∑

i=1

wv
i ,

2. For all non-empty sets U, V ⊆ N such that U ⊆ V it holds

|U |αU ≥ (|V | − 1)αV ,

then {VS} is convergent.

Proof: Suppose conditions (1) and (2) hold. Given any profile P , we prove by induction
that the committee sequence is decreasing, hence, convergent. Since S1 = N , obviously
S2 ⊆ S1. Suppose Sk+1 ⊆ Sk is true for k = 1, . . . , t−1 (in particular St ⊆ St−1). In order
to prove St+1 ⊆ St by way of contradiction, suppose there exists an individual j ∈ St+1

such that j 6∈ St. Consider the greatest integer m such that j ∈ Sm, with m ≤ t − 1.
Notice that this is well-defined, since S1 = N . By the induction hypothesis, it must be that
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St ⊆ Sm and St = St\{j} ⊆ Sm\{j} . Therefore, the vector composed by the |St| greatest
values in {pij}i∈Sm\{j} dominates (component by component) the vector composed by the
|St| greatest values in {pij}i∈St . Hence

w|Sm|−1 · σ
(
P j

Sm\{j}
)

=
(
w
|Sm|−1
1 , . . . , w

|Sm|−1
|Sm|−1

)
·
([

σ
(
P j

Sm\{j}
)]

1
, . . . ,

[
σ
(
P j

Sm\{j}
)]
|Sm|−1

)
≥

(
w
|Sm|−1
1 , . . . , w

|Sm|−1
|St|

)
·
([

σ
(
P j

Sm\{j}
)]

1
, . . . ,

[
σ
(
P j

Sm\{j}
)]
|St|

)
≥

(
w
|Sm|−1
1 , . . . , w

|Sm|−1
|St|

)
· σ

(
P j

St

)
.

Condition (1) guarantees

(
w
|Sm|−1
1 , . . . , w

|Sm|−1
|St|

)
· σ

(
P j

St

)
≥ w|St| · σ

(
P j

St

) |St|
|Sm| − 1

.

By the fact that j ∈ St+1 = VSt(P ), it must be

w|St| · σ
(
P j

St

)
≥ αSt ,

i.e.,

w|St| · σ
(
P j

St

) |St|
|Sm| − 1

≥ αSt

|St|
|Sm| − 1

.

Since St ⊆ Sm, condition (2) ensures

|St|αSt ≥ ( |Sm| − 1)αSm ,

i.e.,

αSt

|St|
|Sm| − 1

≥ αSm .

Hence, we obtain
w|Sm|−1 · σ

(
P j

Sm\{j}
)
≥ αSm .

Since j ∈ Sm, we have j ∈ VSm(P ) = Sm+1, which either contradicts the definition of m or
determines m = t− 1. In this case, it must be that j ∈ St and we obtain a contradiction.
This concludes the induction argument and the proof.

The previous result allows us to derive a characterization result regarding the convergence
of the average OWA.

Corollary 2 Given a TM {αS}, the following two conditions are equivalent:

1. The CQM {AS} is convergent.

2. For all non-empty sets U, V ⊆ N such that U ⊆ V , it holds

|U |αU ≥ (|V | − 1)αV .
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Proof: We initially show that (1) implies (2). Suppose, by way of contradiction, that there
exist two non-empty sets U, V ⊆ N such that U ⊂ V and |U |αU < (|V |−1)αV . Consider
the profile P defined by:

pij =





0, if j ∈ N \ V or
(
i ∈ N \ U and j ∈ V \ U

)
,

αU , if i ∈ U and j ∈ V \ U,

1, if j ∈ U.

It is straightforward to see that

aN (P, j) =





1, if j ∈ U,

|U |αU

n− 1
, if j ∈ V \ U,

0, if j ∈ N \ V.

Taking into account that j ∈ AN (P ) ⇔ aN (P, j) ≥ αN , we have

S2 = AN (P ) =





U, if αN >
|U |αU

n− 1
,

V, if αN ≤ |U |αU

n− 1
.

On the other hand,

aU (P, j) =





1, if j ∈ U,

αU , if j ∈ V \ U,

0, if j ∈ N \ V

and

aV (P, j) =





1, if j ∈ U,

|U |αU

|V | − 1
, if j ∈ V \ U,

0, if j ∈ N \ V.

By |U |αU < (|V | − 1)αV , we have aV (P, j) < αV for every j ∈ V \ U and, therefore,
AV (P ) = U .

Taking into account the two possible cases:

• αN >
|U |αU

n− 1
: S1 = N , S2 = U , S3 = V , S4 = U , S5 = V , . . .

• αN ≤ |U |αU

n− 1
: S1 = N , S2 = V , S3 = U , S4 = V , S5 = U , . . .

we can conclude that the committees’ sequence does not converge, which is a contradiction.

To prove that (2) implies (1), we only need to show that the weights associated with the
average OWA satisfy the condition (1) established in Proposition 2. But clearly, for all
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positive integers m, u, v such that m ≤ u ≤ v, we have

m∑

i=1

wu
i =

m

u
=

m

v

v

u
=

m∑

i=1

wv
i

v

u

as desired.

We complete these results with a discussion of the maximum operator. This function
generalizes the dichotomous case corresponding to an invitation rule, where one approval
of a member of the committee is sufficient to qualify an individual.

Proposition 3 Given a TM {αS}, the following two conditions are equivalent:

1. The CQM {BS} is convergent.

2. For all non-empty sets U, V ⊆ N such that U ⊆ V it holds αU ≥ αV .

Proof: To prove that (1) implies (2), suppose, by way of contradiction, that 2) is not true.
In this case, there exist two non-empty sets U ⊂ V such that αU < αV . Consider the
profile P defined by:

pij =





0, if j ∈ N \ V,

αU , if j ∈ V \ U,

1, if j ∈ U.

It is easy to see that

S2 = BN (P ) =
{

V, if αU ≥ αN

U, if αU < αN .

Similarly, we can check that BU (P ) = V and BV (P ) = U . Therefore, {BS} is not
convergent and we arrive to a contradiction.

To prove that (2) implies (1), it is sufficient to note that any committee sequence is de-
creasing for {BS} and therefore, convergent.

5 Illustrative example

According to Corollary 1, the CQMs associated with the worst, median and olympic CEMs
are not convergent. This means that there exist profiles such that the associated commit-
tees’ sequences are not convergent. However, there can exist profiles where the associated
committees’ sequences are convergent.

Let us suppose there is a group N = {1, . . . , 10} of members and the following profile of
individual opinions:

10



P =




1 1 .7 .6 .3 .5 .6 .2 .2 .4
1 1 .8 .5 .2 .6 .7 .4 .1 .7
.9 .8 .8 .7 .4 .6 .6 .6 .6 .7
1 1 .9 .8 .5 .6 .6 .6 .4 .7
.8 .7 .9 .6 .6 .5 .3 .7 .3 .8
.7 .8 .8 .7 .4 .9 .4 .5 .4 .7
1 1 .8 .7 .2 .5 .9 .4 .6 .8
.5 .5 .6 .4 .3 .4 .3 .7 .2 .2
.6 .4 .6 .7 .4 .5 .6 .3 .9 .4
1 1 1 .5 .3 .7 .8 .2 .3 .7




.

Table 4 shows the outcomes provided by the best, worst, median, average and olympic CEMs
for S = N .

Table 4: Rounded values provided by vN (P, j) for the best, worst, median, average and
olympic CEMs

j 1 2 3 4 5 6 7 8 9 10

bN (P, j) 1 1 1 .7 .5 .7 .8 .7 .6 .8

wN (P, j) .5 .4 .6 .4 .2 .4 .3 .2 .1 .2

mN (P, j) .9 .8 .8 .6 .3 .5 .6 .4 .3 .7

aN (P, j) .83 .8 .78 .6 .33 .54 .54 .43 .34 .6

oN (P, j) .86 .83 .79 .61 .33 .54 .54 .43 .34 .63

Recall that, given a CQM {VS}, the committees’ sequence {St} is defined by S1 = N and
St+1 = VSt(P ). For the sake of the exposition, we do not explicit all the values that should
be calculated to express committees’ sequences.

In Tables 5 and 6 we include the limit set, if there exists, for the CQMs associated with the
best, worst, median, average and olympic CEMs given several possible values of constant
thresholds, αS = α for every S ⊆ N . We indicate the stage where the limit is reached by
means of the corresponding set St.

It is important to note that only in one of the 30 cases we have analyzed, the corresponding
sequence does not converge: the worst CQM for α = .6: S1 = N , S2m = {3} and
S2m+1 = N \ {5} for every positive integer m. Moreover, in 22 cases the limit is reached in
the stage S2, in 4 it is reached in the stage S3, and in 3 cases the limit is reached in stage
S4.

6 Concluding remarks

In the recursive decision procedure introduced in this paper, individuals show their opinions
on the members of the society by means of assessments within the unit interval. For each
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Table 5: Limit sets for best, worst and median CQMs

α Best Worst Median

.3 S2 = N S3 = N \ {5, 8, 9} S2 = N

.4 S2 = N S2 = N \ {5, 8, 9} S2 = N \ {5, 9}

.5 S2 = N S4 = {1, 2, 3, 4, 6} S2 = N \ {5, 8, 9}

.6 S2 = N \ {5} It does not exist S3 = N \ {5, 8, 9}

.7 S3 = N \ {5, 8, 9} S2 = ∅ S2 = {1, 2, 3, 10}

.8 S2 = {1, 2, 3, 7, 10} S2 = ∅ S2 = {1, 2, 3}

Table 6: Limit sets for average and olympic CQMs

α Average Olympic

.3 S2 = N S2 = N

.4 S2 = N \ {5, 9} S2 = N \ {5, 9}

.5 S2 = N \ {5, 8, 9} S2 = N \ {5, 8, 9}

.6 S4 = N \ {5, 6, 8, 9} S4 = N \ {5, 6, 8, 9}

.7 S2 = {1, 2, 3} S3 = {1, 2, 3, 10}

.8 S2 = {1, 2} S2 = {1, 2}

committees’ evaluation mechanism and each family of thresholds, a committees’ qualifica-
tion mechanism is defined that generates a subset of qualified individuals in each stage.
It is worth emphasizing that individuals only show their opinions once, and the recursive
procedure sequentially generates a new group of qualified individuals taking into account
only the opinions of the qualified individuals in the previous stage.

We have mainly considered some specific EOWAs and we have obtained results about the
convergence of the associated committees’ qualification mechanisms. So, we have found
necessary conditions for ensuring the convergence of EOWA mechanisms, being non conver-
gent those EOWAs based on the worst, the median and the olympic procedures. We have
also obtained some sufficient conditions ensuring the convergence of EOWA mechanisms.
Through them, some necessary and sufficient conditions for the convergence of the EOWAs
based on the average and the best opinions have been obtained.

The sequential evaluation could be also be debated and tested for other families of oper-
ators. For their connection with the present study, we do not want to avoid to mention
Linguistic OWAs (LOWAs) operators, presented in Herrera and Herrera-Viedma [7] or Her-
rera, Herrera-Viedma and Verdegay [8]. Notice how the use of these different operators
would require dimmensional extensions of them, as in the case of EOWAs.
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