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Abstract

Different kinds of decision rules have been successfully implemented under a lin-
guistic approach. This paper aims the same goal for the Borda count, a well-known
procedure with some interesting features. In order to this, two ways of extension
from the Borda rule to a linguistic framework are proposed taking into account all
the agents’ opinions or only the favorable ones for each alternative when compared
with each other. In the two cases, both individual and collective Borda counts are
analyzed, asking for properties as good as those of the original patterns.
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1 Introduction

The Borda rule is an appropriate procedure in multi-person decision mak-
ing when several alternatives are considered. This estimation relies on the
processed information from the whole set of alternatives, not only from each
agent’s most preferred one (see Saari [29, p. 19] and Dummett [10], among
others). In addition, Black [3,4], Mueller [27] and Straffin Jr. [31] have noted
that the Borda count chooses the alternative which stands highest on average
in the agents’ preference orderings.

The literature about the Borda rule is very extensive (see Mart́ınez-Panero [25]
and Richter and Wong [28] for references). Of course, the original memory
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of Borda [5] must be mentioned, but a more comprehensive analysis, with
adjustments in the case of indifference between alternatives, can be found in
Black [3,4] and Gärdenfors [17], among others. However, this treatment is not
faithful enough to the agents’ opinions on the alternatives, due to the way of
codifying their ordinary preferences, only through discrete values, namely 0,
0.5 and 1.

There exists a natural development which allows the agents to graduate their
opinions on the alternatives by means of fuzzy preferences. This approach
extends the above mentioned range to all possible values from 0 to 1, and
provides a more versatile count than those based on ordinary preferences. On
this gradual Borda rule and its variants, see Marchant [23,24], Garćıa-Lapresta
and Mart́ınez-Panero [15,16] and Mart́ınez-Panero [25].

The inputs of the mentioned Borda counts are numerical assessments. How-
ever, the agents tend to operate (at least in a latent manner) in terms of lin-
guistic expressions rather than with numbers (see Zadeh [35–37] and Herrera,
Herrera-Viedma and Verdegay [18], among others). Well, this fact conducts
us naturally to a linguistic framework. So, our aim in this paper consists in
designing linguistic Borda counts from the original Borda rule and its discrete
or gradual extensions, preserving their good features as far as possible (on this
approach see Garćıa-Lapresta, Lazzari and Mart́ınez-Panero [14]). Whichever
the pattern may be (discrete or gradual), we note that the Borda rule is a
two stage scheme in the following sense. In the first phase, individual Borda
counts are computed, and it would be desirable for these scores to respect the
agent’s opinions on the alternatives. In Garćıa-Lapresta and Mart́ınez-Panero
[16] and Mart́ınez-Panero [25] we have asked for the individual Borda counts
to be representative of the corresponding preferences, and in connection with
this aspect, different modalities of transitivity which ensure representativity
for the individual counts have been analyzed, depending on the discrete or
gradual version of the implemented procedure. The second phase aggregates
individual scores into a total one for each alternative, and the highest score
determines the Borda winner. We note that this scheme does not respect the
Condorcet principle: the alternative which defeats each other by simple major-
ity in pairwise tournaments might not be the Borda winner (in fact Gärdenfors
[17] and Young [34] extend this result to any scoring rule, as Condorcet did).
So, the Borda rule is not Condorcet consistent (see Baharad and Nitzan [1]
for a deeper insight on this analysis). However, the Condorcet winner cannot
be a Borda loser (see Fishburn and Gehrlein [12] for the original Borda rule,
and Mart́ınez-Panero [25] for the discrete and gradual cases).

The paper is organized as follows. In Section 2 we use linguistic labels for
the agents to express their preferences. Then, we have represented the la-
bels through trapezoidal fuzzy numbers, which capture the vagueness of such
modality of preferences. The usual fuzzy arithmetic and a specific order are
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also established for computation. In Section 3, two kinds of both individual
and collective linguistic Borda counts are introduced. Moreover, we find lin-
guistic transitivity conditions which ensure these procedures be representative
of the individual linguistic preferences. Subsection 3.2 is devoted to show, by
means of an example, how to implement such linguistic Borda procedures.
Subsection 3.3 includes the aforementioned Borda-Condorcet analysis. This is
extended to a linguistic context, and a symmetry condition on the semantics
associated with the set of labels is found to guarantee desirable properties for
one of the introduced linguistic Borda counts. Finally, Section 4 contains some
concluding remarks.

2 Linguistic preferences

Preferences are a basic instrument for dealing with decision problems. Al-
though fuzzy preferences are a relevant tool for modelling preference intensi-
ties, linguistic preferences could be more appropriate for capturing the lack of
precision in human behavior. Some papers related to the linguistic approach in
decision making are Yager [33], Herrera, Herrera-Viedma and Verdegay [18,19],
Herrera – Mart́ınez [20], Herrera-Viedma [21], Herrera-Viedma and Peis [22],
Batyrshin, Shajdullina and Shemeretov [2], Xu [32] and Garćıa-Lapresta [13],
among others.

Now we take into account the approach included in Garćıa-Lapresta [13]. Let
X = {x1, . . . , xn} be a set of alternatives and assume that m agents show their
preferences over the pairs of X in a linguistic manner, with n ≥ 2 and m ≥ 2.
Let L = {l0, l1, . . . , ls} be a set of linguistic labels, where s ≥ 2, ranked
by a linear order: l0 < l1 < · · · < ls. There ought to be an intermediate
label representing indifference, and the rest of labels are defined around it
symmetrically. The number of labels, s + 1, will be odd and, consequently,
ls/2 is the central label.

Suppose that each agent k ∈ {1, . . . , m} compares all the pairs of alternatives
of X and declares levels of preference by means of a linguistic binary relation
Rk : X ×X −→ L. In what follows we use the notation rk

ij = Rk(xi, xj) and
it means the level of preference with which agent k prefers xi over xj.

Definition 1 A linguistic preference relation on X based on L is a mapping
Rk : X ×X −→ L such that:

rk
ij = ls, if xi is totally preferred to xj,

ls/2 < rk
ij < ls, if xi is somewhat preferred to xj,
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rk
ij = ls/2, if xi is indifferent to xj,

l0 < rk
ij < ls/2, if xj is somewhat preferred to xi,

rk
ij = l0, if xj is totally preferred to xi.

Remark 2 On the sequel we will assume that linguistic preference relations
satisfy the following reciprocity condition:

rk
ij = lh ⇔ rk

ji = ls−h,

for all xi, xj ∈ X and all h ∈ {0, 1, . . . , s}.

The Borda count requires these labels to be added, and the results to be com-
pared. We note that linguistic labels can be managed symbolically by means
of the linguistic OWA operators introduced in Herrera, Herrera-Viedma and
Verdegay [19]. However, as pointed out before, in this paper we follow Garćıa-
Lapresta [13]. In this way, we consider the commutative monoid (〈L〉, +) gen-
erated by L by means of all possible sums of labels of L with an associative
and commutative operation + on L, where l0 is the neutral element:

(1) L ⊂ 〈L〉
(2) l + l′ ∈ 〈L〉, for all l, l′ ∈ 〈L〉
(3) l + (l′ + l′′) = (l + l′) + l′′, for all l, l′, l′′ ∈ 〈L〉
(4) l + l′ = l′ + l, for all l, l′ ∈ 〈L〉
(5) l + l0 = l, for all l ∈ 〈L〉.

We also consider a total order ≤ on 〈L〉 compatible with the original order
on L:

(6) l ≤ l, for all l ∈ 〈L〉
(7) (l ≤ l′ and l′ ≤ l) ⇒ l = l′, for all l, l′ ∈ 〈L〉
(8) (l ≤ l′ and l′ ≤ l′′) ⇒ l ≤ l′′, for all l, l′, l′′ ∈ 〈L〉
(9) l ≤ l′ or l′ ≤ l, for all l, l′ ∈ 〈L〉

(10) l0 < l1 < · · · < ls, where < is the strict order associated with ≤ (l < l′

if l ≤ l′ and l 6= l′, for all l, l′ ∈ 〈L〉).

Moreover, we suppose

(11) l ≤ l′ ⇒ l + l′′ ≤ l′ + l′′, for all l, l′, l′′ ∈ 〈L〉.

Then, (〈L〉, +,≤) is a totally ordered commutative monoid.

We note that for each l ∈ 〈L〉, there exist non negative integers λ0, λ1, . . . , λs

such that l =
s∑

k=0

λklk, where λklk is the addition of λk times the label lk and

0lk = l0.
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Although (〈L〉, +) is a canonical structure, (〈L〉,≤) is not. So, we are going
to represent the labels through trapezoidal fuzzy numbers (see, for instance,
Dubois and Prade [9]), because this kind of fuzzy numbers are an appropriate
tool to capture the vagueness of the assessments (see, for instance, Delgado,
Vila and Voxman [6]).

Following the last mentioned authors, given a trapezoidal fuzzy number (TFN)
t = (a, b, c, d), its value, V (t), and ambiguity, A(t), are the real numbers

V (t) =
c + b

2
+

(d− c)− (b− a)

6

and

A(t) =
c− b

2
+

(d− c) + (b− a)

6
.

For comparing TFNs, we consider a lexicographic order which attends to the
highest value as first characteristic, and if the TFNs share the same value,
the smallest ambiguity is taken into account, as corresponding to the sharpest
aggregated opinion:

t Â t′ ⇔





V (t) > V (t′)

or

V (t) = V (t′) and A(t) < A(t′).

This binary relation between TFNs is asymmetric, i.e., t Â t′ implies that
not t′ Â t, and negatively transitive, i.e., if not t Â t′ and not t′ Â t′′, then
not t Â t′′; consequently, Â is transitive. However, Â is not a linear order. For
instance, neither (0, 3, 3, 6) Â (2, 2, 4, 4) nor (2, 2, 4, 4) Â (0, 3, 3, 6), since both
TFNs have the same value, 3, and the same ambiguity, 1. If two different TFNs
share value and ambiguity, it should be necessary to extend the lexicographic
order above (see Delgado, Vila and Voxman [7]).

As mentioned before, we associate with each linguistic label lh ∈ L an
appropriate TFN th. Furthermore, we extend the representation to 〈L〉: if

l =
s∑

h=0

λhlh, its associated TFN would be t =
s∑

h=0

λhth.

Since V (t + t′) = V (t) + V (t′) and A(t + t′) = A(t) + A(t′) for every pair
of TFNs t and t′, we can extend the above order Â in the set of TFNs to the
set 〈L〉: l Â l′ ⇔ t Â t′, where t and t′ are the associated TFNs of l and l′,
respectively.

Definition 3 Two TFNs t = (a, b, c, d) and t′ = (a′, b′, c′, d′) are symmetri-
cal if a′ = 1−d, b′ = 1−c, c′ = 1−b and d′ = 1−a. Given a representation of
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L = {l0, . . . , ls} by means of TFNs t0, . . . , ts, we say that this representation
is symmetrical if th and ts−h are symmetrical, for each h ∈ {0, 1, . . . , s}.

It is worth to emphasize that for each symmetrical representation of L, it holds
ts/2 = (a, b, 1− b, 1− a) for some a, b ∈ [0, 1], and V (ts/2) = 0.5.

In Table 1 we introduce a concrete semantics which provides a symmetrical
representation of a set with 9 linguistic labels. We note that ambiguity is
greater around indifference than in the proximities of extreme preferences,
which are crisp. This semantics will be used in the examples of the paper.

Label Meaning TFN

l0 xj is totally preferred to xi t0 = (0, 0, 0, 0)

l1 xj is highly preferred to xi t1 = (0, 0.02, 0.05, 0.11)

l2 xj is rather preferred to xi t2 = (0.05, 0.11, 0.17, 0.25)

l3 xj is slightly preferred to xi t3 = (0.17, 0.25, 0.34, 0.44)

l4 xi is indifferent to xj t4 = (0.34, 0.44, 0.56, 0.66)

l5 xi is slightly preferred to xj t5 = (0.56, 0.66, 0.75, 0.83)

l6 xi is rather preferred to xj t6 = (0.75, 0.83, 0.89, 0.95)

l7 xi is highly preferred to xj t7 = (0.89, 0.95, 0.98, 1)

l8 xi is totally preferred to xj t8 = (1, 1, 1, 1)

Table 1: Semantics with 9 linguistic labels.

3 Linguistic Borda counts

Definition 4 Let Rk be a linguistic preference relation on X based on L.

(1) The ordinary preference relation associated with Rk, Âk, is defined by
xi Âk xj if and only if rk

ij > ls/2.

(2) The ordinary preference-indifference relation associated with Rk, ºk, is
defined by xi ºk xj if and only if rk

ij ≥ ls/2.

The threshold ls/2 is considered because the condition rk
ij > rk

ji is equivalent
to rk

ij > ls/2.
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We note that Âk is asymmetric, i.e., if xi Âk xj, then does not hold xj Âk xi;
and ºk is complete, i.e, xi ºk xj or xj ºk xi, for all xi, xj ∈ X.

3.1 Broad and narrow approaches

Now we introduce two different linguistic Borda counts, broad and narrow,
both of them extending the original Borda count, depending on the aggrega-
tion of all the preference levels, or only those greater than the central label. It
is worth mentioning that Sen [30] also defines broad and narrow Borda counts
in connection with the fulfillment of the independence of irrelevant alterna-
tives principle. However, these variants, although sharing names, are different
of ours. Sen takes into account the amplitude of the referential set of alter-
natives in order to define a choice function, while we consider opinions (all of
them or only the favorable ones) in pairwise comparisons of alternatives.

Definition 5 Let k ∈ {1, . . . ,m}.

(1) The broad Borda count of k is the mapping rk : X −→ 〈L〉 defined by:

rk(xi) =
n∑

j=1

rk
ij.

(2) The narrow Borda count of k is the mapping r̂k : X −→ 〈L〉 defined by:

r̂k(xi) =
∑

xiÂkxj

rk
ij.

(3) The collective broad Borda count is the mapping r : X −→ 〈L〉 defined
by:

r(xi) =
m∑

k=1

rk(xi).

(4) The collective narrow Borda count is the mapping r̂ : X −→ 〈L〉 defined
by:

r̂(xi) =
m∑

k=1

r̂k(xi).

Definition 6 Given xi ∈ X,

(1) xi is a broad Borda winner if r(xi) ≥ r(xj) for all xj ∈ X.

(2) xi is a narrow Borda winner if r̂(xi) ≥ r̂(xj) for all xj ∈ X.

(3) xi is a broad Borda loser if r(xi) ≤ r(xj) for all xj ∈ X.

(4) xi is a narrow Borda loser if r̂(xi) ≤ r̂(xj) for all xj ∈ X.
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It would be desirable for the linguistic Borda counts to require the fulfillment of
the following property of representativity: when two alternatives are compared
by an agent, that with the highest Borda qualification must be the preferred
one.

Definition 7 Let Rk be a linguistic preference relation on X based on L.

(1) The broad Borda count of the individual k is representative of Rk if for
all xi, xj ∈ X it holds:

xi Âk xj ⇒ rk(xi) > rk(xj).

(2) The narrow Borda count of the individual k is representative of Rk if for
all xi, xj ∈ X it holds:

xi Âk xj ⇒ r̂k(xi) > r̂k(xj).

Now we present individual rationality conditions in terms of some transitivity
properties which ensure representativity of the corresponding Borda counts
(on transitivity in the framework of linguistic preferences see, for instance,
Dı́az, Garćıa-Lapresta and Montes [8]).

Definition 8 Let Rk be a linguistic preference relation on X based on L.

(1) Rk is T -transitive if for all xi, xj, xp ∈ X it holds:

(xi ºk xj and xj ºk xp) ⇒ rk
ip ≥ max{rk

ij, r
k
jp}.

(2) Rk is T̂ -transitive if for all xi, xj, xp ∈ X it holds:

(xi Âk xj and xj Âk xp) ⇒ rk
ip ≥ max{rk

ij, r
k
jp}.

Notice that T -transitivity implies T̂ -transitivity. However, it can be shown
that representativity of rk does not imply that of r̂k.

Proposition 9 If Rk is T -transitive, then rk is representative of Rk.

PROOF. Suppose xi Âk xj, i.e., rk
ij > ls/2. First let us see that rk

ip ≥ rk
jp

holds for each xp ∈ X. Several cases can be considered:

(1) If rk
jp ≥ ls/2, then rk

ip ≥ max{rk
ij, r

k
jp}.

(2) If rk
jp < ls/2 and rk

ip ≤ ls/2, then rk
pi ≥ ls/2. Thus, rk

pj ≥ max{rk
pi, r

k
ij},

and again rk
ip ≥ rk

jp.

(3) If rk
jp < ls/2 and rk

ip > ls/2, then rk
ip ≥ rk

jp holds trivially.
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Even more, being rk
ij > ls/2, the inequality rk

ip ≥ rk
jp is strict at least for p = i

and p = j. Therefore,

rk(xi) =
n∑

p=1

rk
ip >

n∑

p=1

rk
jp = rk(xj).

Proposition 10 If Rk is T̂ -transitive, then r̂k is representative of Rk.

PROOF. Let P (i) = {p | rk
ip > ls/2} for each xi ∈ X. Then,

r̂k(xi) =
∑

p∈P (i)

rk
ip and r̂k(xj) =

∑

p∈P (j)

rk
jp.

Suppose rk
ij > ls/2; now we prove P (j) ⊂ P (i): if p ∈ P (j), then rk

jp > ls/2;
by hypothesis rk

ij > ls/2, hence rk
ip ≥ max{rk

ij, r
k
jp}, and then p ∈ P (i). Notice

that P (j) 6= P (i): rk
ij > ls/2 implies j ∈ P (i), and rk

jj = ls/2 implies j /∈ P (j).
Consequently there are more terms in r̂k(xi) than in r̂k(xj). Moreover, each
term in r̂k(xi) is greater than or equal to the corresponding term in r̂k(xj): if
p ∈ P (j) ⊂ P (i), then we have rk

ip ≥ max{rk
ij, r

k
jp} ≥ rk

jp and, consequently,

r̂k(xi) =
∑

p∈P (i)

rk
ip >

∑

p∈P (j)

rk
jp = r̂k(xj).

3.2 A comparative example

Now we show how to implement the aforementioned treatments in order to
obtain a collective decision. As will be shown, the final result may depend on
the chosen procedure.

Example 11 Suppose three individuals who show their linguistic preferences
over three alternatives, x1, x2 and x3, by means of the linguistic labels provided
in Table 1. As usual, their assessments can be arranged through matrices. In
our case, let

(
r1
ij

)
=




l4 l4 l6

l4 l4 l6

l2 l2 l4




,
(
r2
ij

)
=




l4 l6 l6

l2 l4 l4

l2 l4 l4




,
(
r3
ij

)
=




l4 l2 l2

l6 l4 l5

l6 l3 l4




be such matrices of individual linguistic preferences (all of them T -transitive).
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For each alternative, the individual broad Borda counts can be obtained by
adding up the entries of the corresponding row in the associated matrix of
individual linguistic preference, and so collective broad Borda counts are the
sum of the entries of the corresponding row along all these matrices.

Then, in our case the collective counts are:

r(x1) = 2l2 + 4l4 + 3l6, r(x2) = l2 + 5l4 + l5 + 2l6, r(x3) = 3l2 + l3 + 4l4 + l6.

Now, for comparing these results we use the TFN representation provided by
Table 1. Some computations show that:

V (2t2 + 4t4 + 3t6) = 4.856, V (t2 + 5t4 + t5 + 2t6) = 5.058,

V (3t2 + t3 + 4t4 + t6) = 3.585.

Consequently, r(x2) > r(x1) > r(x3), and x2 is the broad Borda winner.

The individual narrow Borda counts can be obtained by adding up the entries
greater than l4 of the corresponding row in the associated matrix of individual
linguistic preference, and so collective narrow Borda counts are the sum of the
entries greater than l4 of the corresponding row along all these matrices. The
results would be:

r̂(x1) = 3l6, r̂(x2) = l5 + 2l6, r̂(x3) = l6.

In this case, without any consideration about value or ambiguity, it is easy to
see (only with the original order of labels) that r̂(x1) > r̂(x2) > r̂(x3). Thus,
x1 would be the narrow Borda winner.

3.3 Condorcet analysis

Simple majority is one of the voting systems more used in practice. According
to this procedure, xi defeats xj if there are more voters who prefer xi to xj

than those who prefer xj to xi. The concept of Condorcet winner is related
to simple majority. A Condorcet winner is an alternative which defeats each
other by simple majority. There is a widespread agreement in the fact that
such alternative (supposed to exist) must be chosen in a collective decision (see
Fishburn [11], for example). Analogously, a Condorcet loser is an alternative
which is defeated by each other by simple majority.

Now we introduce two linguistic extensions of these concepts, corresponding
to the broad and the narrow points of view, in order to contrast them with
those concerning the linguistic Borda approach.
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Definition 12

(1) The broad simple majority is defined by the ordinary binary relation PS

given by:

xi PS xj if and only if
m∑

k=1

rk
ij >

m∑

k=1

rk
ji.

(2) The narrow simple majority is defined by the ordinary binary relation P̂S

given by:

xi P̂S xj if and only if
∑

xiÂkxj

rk
ij >

∑
xjÂkxi

rk
ji.

Notice that both PS and P̂S are asymmetric binary relations, but not neces-
sarily acyclic.

Definition 13 Given xi ∈ X,

(1) xi is a broad Condorcet winner if xi PS xj for all xj ∈ X \ {xi}.
(2) xi is a narrow Condorcet winner if xi P̂S xj for all xj ∈ X \ {xi}.
(3) xi is a broad Condorcet loser if xj PS xi for all xj ∈ X \ {xi}.
(4) xi is a narrow Condorcet loser if xj P̂S xi for all xj ∈ X \ {xi}.

We note that both the Condorcer winners and the Condorcer losers are unique,
whenever they exist (the Condorcet approach might not be decisive in collec-
tive decision making).

Although Condorcet and Borda winners may be different, in the following
proposition we justify that the broad Borda rule never selects the Condorcet
loser when the set of labels is represented in a symmetrical way.

Proposition 14 For each symmetrical representation of L, the broad Con-
dorcet loser cannot be a broad Borda winner.

PROOF. It is easy to check that for every couple of symmetrical TFNs
t = (a, b, c, d) and t′ = (1−d, 1−c, 1−b, 1−a), it holds V (t)+V (t′) = 1 and
A(t) = A(t′). Suppose that rk

ij is represented by the TFN tkij. We note that

the total amount of the assessments made by an agent k is given by n(n−1)
2

couples rk
ij + rk

ji, where i, j = 1, . . . , n and i 6= j, plus n terms rk
ii = ls/2.

Being 1 the value of each couple tkij + tkji and 0.5 the value of the tkii terms,
the total value of the sum of all individual broad Borda counts of agent k is
exactly n(n−1)

2
+ n 0.5 = n2

2
. Then, the value of the sum of all collective broad

Borda counts is m n2

2
. By way of contradiction, suppose xi is both a broad

Condorcet loser and a broad Borda winner. Bear in mind that
m∑

k=1

rk
ij and
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m∑

k=1

rk
ji are represented through sums of symmetrical TFNs,

m∑

k=1

tkij and
m∑

k=1

tkji,

respectively, with the same ambiguity. Consequently, if
m∑

k=1

rk
ij <

m∑

k=1

rk
ji, then

V

(
m∑

k=1

tkij

)
< V

(
m∑

k=1

tkji

)
, if i 6= j. In addition, V

(
m∑

k=1

tkij

)
+V

(
m∑

k=1

tkji

)
= m,

for all j = 1, . . . , n. Then, the broad Condorcet loser must have a broad Borda
count with a value smaller than n m

2
. But, being xi a broad Borda winner,

none of the individual broad Borda counts of the n alternatives could reach
the value n m

2
; so the value of the sum of all collective broad Borda counts

must be smaller than n2 m
2
, contrary to the exact value found before.

Now we show that Proposition 14 is not verified under a narrow approach.

Example 15 Suppose five individuals who show their linguistic preferences
over three alternatives x1, x2 and x3, by means of the linguistic labels provided
in Table 1, in the following manner: two of them prefer totally x1 to both x2

and x3, and they have a slight preference for x2 over x3; the other three have
a slight preference for x2 over x1 and for x3 over x1, and they are indifferent
between x2 and x3. We note that all the individual preferences are T̂ -transitive.
It is easy to check that x1 is simultaneously the narrow Condorcet loser and
the narrow Borda winner.

By using similar arguments to those in the proof of Proposition 14, we obtain
a dual result: the broad Borda count never ranks the broad Condorcet winner
in the last position.

Proposition 16 For each symmetrical representation of L, the broad Con-
dorcet winner cannot be a broad Borda loser.

Now we justify that Proposition 16 is not verified in the narrow cases.

Example 17 Suppose ten individuals who show their linguistic preferences
over three alternatives x1, x2 and x3, by means of the linguistic labels provided
in Table 1, in the following manner: two of them highly prefer x1 to both x2

and x3, and they have a slight preference for x2 over x3; three of them have
a high preference for x2 over x1 and for x3 over x1, and they have a slight
preference for x3 over x2; other three have a high preference for x1 over x3

and for x2 over x3, and they have a slight preference for x1 over x2; the last
two individuals highly prefer x3 to both x1 and x2, and they have a slight
preference for x2 over x1. We note that all the individual preferences are T̂ -
transitive. It is easy to see that x2 is simultaneously the narrow Condorcet
winner and the narrow Borda loser.
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4 Concluding remarks

The discrete Borda count allows the agents only to show which alternatives are
preferred in pairwise comparisons. Thus, the use of a fuzzy approach does im-
prove the method by considering more accurate information from the agents,
namely, intensities of preference among alternatives. These assessments are
usually required to be allocated in the unit interval. However, as Zadeh [36]
suggests, it would be desirable to manage primary perceptions rather than
measurements based on them. So, we use linguistic labels as inputs in our
Borda count proposals. Two ways of implementation of a linguistic Borda
count, broad and narrow, have been developed, taking into account all the
assessments or only those favorable for one alternative when compared with
each other. Concerning to the individual counts, the broad approach requires
a more restrictive condition of linguistic transitivity than that founded for
the narrow case in order to guarantee the representativity of the individual
preferences. From a collective point of view, our Condorcet analysis has re-
vealed that the linguistic broad Borda count presents better properties than
the narrow one.

To sum up, the linguistic treatment appears to be close to the manner in which
agents feel their preferences and, when applied to the Borda count, interesting
features from the discrete or gradual cases, such as decisiveness, respect for
the mean, etc., can be preserved. These are the reasons why we suggest the use
of the linguistic Borda count in practice. And more specifically we advocate
for the broad approach, which excludes Condorcet losers as the discrete and
fuzzy Borda count do.

Acknowledgements

The financial support of the Spanish Ministry of Education and Science (Project
SEJ2005-04392/ECON), the Junta de Castilla y León (Consejeŕıa de Edu-
cación y Cultura, Project VA092A08), and ERDF are gratefully acknowledged.
The authors are also grateful for comments from Enrique Herrera-Viedma and
two anonymous referees.

References

[1] E. Baharad, S. Nitzan (2003). The Borda rule, Condorcet consistency and
Condorcet stability. Economic Theory, 22, pp. 685-688.

13



[2] I. Batyrshin, N. Shajdullina, L. Shemeretov (2004). Strict valued preference
relations and choice function in decision-making procedures. In: R. Monroy, G.
Arroyo-Figueroa, L.E. Sucar et al. (Eds.), Lecture Notes in Computer Science,
2972, Springer Verlag, Heidelberg, pp. 332-341.

[3] D. Black (1958). The Theory of Committees and Elections. Kluwer Academic
Publishers, Boston.

[4] D. Black (1976). Partial justification of the Borda count. Public Choice, 28, pp.
1-16.
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