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1 Introduction

Usually, voters find it difficult to linearly order a reasonable number of
feasible alternatives. For example, Dummett [8, p. 243] says,

“If there are, say, twenty possible outcomes, the task of deciding the
precise order of preference in which he ranks them may induce a
kind of psychological paralysis in the voter; and, for the tellers, the
labour of reckoning the preference scores becomes very tedious. We
have, therefore, to devise new or modified procedures for use in this
case”1.

However, there is reasonable evidence (see below) that voters can easily
(provided they are not indifferent between all the alternatives) select reliably
the best and the worst alternative, and, perhaps, rank the p–best and q–
worst alternatives for “small” p and q.

Finn and Louviere [9] proposed, and studied, a discrete choice task in
which a person selects both the best and the worst alternative in an available
(sub)set of alternatives. Since the publication of that paper, interest in, and
use of, such best-worst choice tasks has been increasing, with two empirical
applications receiving “best paper” awards (Cohen [6]; Cohen and Neira
[7]). Despite the increasing use of the approach, Marley and Louviere [15]
develop the first detailed theoretical properties of probabilistic models of
best-worst choice; Marley [14] summarizes those, and other, theoretical and
empirical work. In fact, Marley and Louviere [15] also present some basic
results on the “optimality” of scoring rules in the estimation of parameters
in probabilistic models of best-worst choice; that work can be interpreted,
in the voting context, as assuming a restricted domain for the possible
voting profiles. In this paper, we approach the problem deterministically
and without domain restrictions.

To find axiomatic characterizations of voting systems is a relevant issue
in Social Choice Theory. In fact, as pointed out by Merlin [17], Arrow’s the-
orem [1] can be understood as an axiomatization of dictatorship. Given that
Arrow’s theorem is usually considered a negative result, May’s theorem [16]
(which characterizes simple majority) is commonly considered as the first in
a long list of characterization theorems of voting theory (for references see
Merlin [17] and Marchant [13], among others). In this tradition, we focus
our attention on characterizing a class of best-worst voting systems in the
context of scoring rules; the latter are of major importance in the voting
literature (see Chebotarev and Shamis [4] for a referenced survey).

The remainder of the paper is organized as follows. Section 2 introduces
standard and extended scoring rules and their specialization to best-worst
voting; Section 3 characterizes general and basic best-worst voting; and
Section 4 discusses open problems associated with generalizations of best-
worst voting.

1 Of course, the concern regarding “the labor of reckoning the preference scores”
no longer carries much weight.
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2 Scoring Rules: General and for Best-Worst Voting

In what follows we assume situations2 in which voters’ preferences over a
set of n feasible alternatives X = {x1, . . . , xn} are given by linear orders. In
this context, a scoring rule is defined by a vector of scores (s1, . . . , sn) ∈ IRn,
with s1 ≥ · · · ≥ sn and s1 > sn, where for each voter’s ranking, s1 points
are assigned to the top-ranked alternative, s2 points to the second-ranked
alternative, and so on. The alternative(s) with the largest total score, across
voters, is (are) the winner(s)3.

Given a scoring rule with score vector (s1, . . . , sn), and a, b ∈ IR such
that a > 0, the scoring rule with vector of scores (s′1, . . . , s

′
n), where s′i =

asi + b for all i = 1, . . . , n, is equivalent to the previous one, in the sense
that they provide the same social outcomes.

A scoring rule (s1, . . . , sn) is standard4 if sn ≥ 0, otherwise, it is ex-
tended. Clearly, every extended scoring rule (s1, . . . , sn) is equivalent to
the standard one (s′1, . . . , s

′
n), where s′i = si − sn. Even more, every scor-

ing rule (s1, . . . , sn) (standard or extended) is equivalent to a standard one
(s′1, . . . , s

′
n) where s′1 = 1 and s′n = 0 – simply take s′i = (si−sn)/(s1−sn).

As discussed in Section 1, usually a person finds it difficult to reliably
rank order a reasonable number n of feasible alternatives, but there is con-
siderable evidence from discrete choice experiments that (provided the per-
son is not indifferent between all the alternatives) he/she can select reliably
the best and the worst alternative. Also, to the extent that voters respond
reliably in elections that require the selection of the best alternative (plu-
rality) [respectively, the worst alternative (antiplurality)], one might expect
that they can vote reliably in elections that use best-worst voting. We there-
fore now discuss scoring rules for (ranked) 1–best and 1–worst voting, fol-
lowed in Section 3 by a characterization of the corresponding social choice
function (a social choice function assigns, to each situation, a nonempty
subset of X).

Let α, δ be a pair of positive scores5; we explain, below, why we con-
strain the scores to be positive. The (ranked) 1–best 1–worst voting proce-
dure [α ; δ] is the voting system where, for each voter, just α (respectively,
δ) points are assigned to that voter’s first-ranked (respectively, last-ranked)
alternative. The alternative(s) with the largest score difference – i.e., the
difference between the total α score and the total δ score for the alterna-
tive across voters – is (are) the winner(s). As the voting rule is intended
to depend on both the best and the worst votes, each of α and δ must be

2 According to Gärdenfors [11], a situation is a set consisting of one preference
order for each voter.

3 For all the voting procedures and scoring rules that we consider, ties can occur.
If this causes difficulty to reach the final social decision, then some additional
procedure (e.g., random) is required.

4 This definition differs from that of Woeginger [21] who allows sign free scores.
5 We use α (resp., δ) as a reminder that the scores are for (ranked) approval

(resp., disapproval) votes.
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positive (rather than just nonnegative). In particular, the excluded [α; 0]
(respectively, [0; δ]) corresponds to plurality (respectively, antiplurality).

Clearly, 1–best 1–worst, defined by [α; δ], corresponds to the extended
scoring rule (α, 0, . . . , 0,−δ), with an equivalent standard scoring rule
(1, δ

α+δ , . . . , δ
α+δ , 0). We call this general 1−best 1−worst, i.e., the only

restriction is that α > 0, δ > 0. Clearly, the relative size of α to δ cor-
responds to the weight (importance) that the scoring procedure puts on the
best versus the worst votes. The special case [α;α], α 6= 1, coincides with
[1; 1] because their respective extended scoring versions (α, 0, . . . , 0,−α)
and (1, . . . ,−1) are both equivalent to the same standard scoring rule
(1, 1

2 , . . . , 1
2 , 0) ; we call this case basic 1–best 1–worst and add a compact

characterization of it after characterizing the general case. Taking into ac-
count again their standard scoring versions, presented above, it is easy to
see that two 1–best 1–worst voting systems [α; δ] and [α′; δ′] are equivalent
if and only if α′δ = αδ′. In this way, if α 6= δ, then [α; δ] is essentially
different to [1; 1].

It is important to note that the above use of an extended scoring rule
over all the alternatives in the formulation of the (ranked) 1−best 1−worst
voting procedure does not entail that voters rank order (all) the alterna-
tives. An exactly parallel situation arises, for instance, with plurality, where
voters only indicate their best alternative (they do not need to provide a
ranking), but scoring rules over all the alternatives are used in its axiomatic
characterization (see Richelson [19]).

3 Characterization of 1–Best 1–Worst Voting

We now develop two characterizations of 1–best 1–worst voting: one for
the general case [α; δ], the other for the basic case [1 ; 1]. Our approach
follows that used in the fundamental paper of Young [23], where he proved
that a scoring rule is a social choice function characterized by the following
axioms6:

A Anonymity : There is an egalitarian consideration for the agents.
N Neutrality : There is a symmetric status for each alternative.
R Reinforcement : If two disjoint subsets of voters have at least one com-

mon alternative among their winners, then all and only such common
alternatives keep on being winners for the joined set of voters7.

6 For a formal account of conditions generally considered “desirable” for so-
cial choice functions (these axioms among them), see Young [22,23]. It is worth
mentioning that another characterization of scoring rules was given by Smith [20].

7 According to Young [22], this property is a kind of Pareto condition on subsets
of voters. It is also considered by Fishburn [10] in his characterization of approval
voting, and by Young and Levenglick [24] in their characterization of Kemeny’s
rule. For other names for this condition (consistency, separability, etc.), see Merlin
[17, p. 95].
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C Continuity : If two disjoint sets of voters U and V select x and y as
winners, respectively, then x is a winner for the superset (mU) ∪ V for
m sufficiently large8.

There is a very large literature characterizing voting systems in the scor-
ing context. For example: the Borda rule has been characterized by Young
[23] and Merlin [17, Theorem 7]; Richelson [19], Lepelley [12], Ching [5] and
Merlin and Naeve [18] each characterize plurality rule (in different ways);
and Merlin [17] and Baharad and Nitzan [2] characterize anti-plurality (in
different ways).

Given the successes of this approach, our goal is to develop properties
of best-worst voting that allow us to say that its associated scoring rule
is determined by the fulfillment of these conditions in addition of those
proposed by Young. We succeed in this goal for general 1−best 1−worst
voting [α; δ] and for the basic case [1; 1] ; the first requires three conditions,
the second a single condition, in addition to Young’s.

First we present the three properties that, together with Young’s, are
necessary and sufficient to characterize general 1–best 1–worst voting [α; δ].

TSM Top Strict Monotonicity : If x is a non-unique winner in a situation
where at least one voter considers x to be the best alternative, then x
would not be a winner in the situation obtained where just this voter
changes his opinion only about x (preserving his pairwise preferences
about the other alternatives).

BSM Bottom Strict Monotonicity : If x is a non-unique winner in a situa-
tion where at least one voter does not consider x to be the worst alterna-
tive, then x would not be a winner in the situation obtained where just
this voter changes his opinion about x, and decides that x is the worst
alternative in the second situation (preserving his pairwise preferences
about the other alternatives).

IMA Independence of Middle Alternatives: The winner(s) in a situation are
preserved if one or more voters change their opinions about alternatives
other than those they have selected as their personal best and worst
(i.e., if pairwise preferences containing the best or the worst alternative
do not change in a new situation, then the winner(s) are the same).

The above three properties are related to those used in characteriza-
tions of other voting systems. For instance, that of plurality (respectively,
antiplurality) uses bottom invariance (respectively, top invariance) plus the
standard (Young) conditions (see Barberà and Dutta [3] and Merlin [17]).
However, in Merlin [17] “top” means above the winner, whereas our “top”
(i.e., “best”) means a winner (the same applies, in a symmetric manner, for
“bottom”). In fact, our top and bottom conditions are somewhat related to
May’s [16] positive responsiveness, and our IMA can be understood as an
invariance condition in the sense of Merlin [17].

8 In this axiom, for U a set of voters and their votes, (mU) means m copies of
those voters and votes. This Archimedian property was previously considered by
Smith [20].
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Theorem 1. An extended scoring rule satisfies TSM, BSM and IMA
if and only if it is a general 1–best 1–worst voting system [α; δ].
Proof. Obviously, every 1–best 1–worst voting system satisfies the required
properties.

For sufficiency, we consider the cases n = 2, 3 in detail so that the reader
will more easily understand the general case n ≥ 4.

Notice that if n = 2, just the definition of scoring rule entails s1 > s2,
given that α > 0, δ > 0, and it is routine to check that TSM, BSM (and
IMA trivially) hold.

If n = 3, IMA trivially holds, and it will be proven that TSM and
BSM entail s1 > s2 > s3.

Consider the situation:

Voter 1 Voter 2 Voter 3
x1 x2 x3

x2 x3 x1

x3 x1 x2

It is clear that all the alternatives obtain the same total score: s1+s2+s3,
so all of them are winners.

Now we modify the previous situation in two cases:

1. The first voter interchanges the first and the second alternatives, and
the opinions of the other voters do not change:

Voter 1 Voter 2 Voter 3
x2 x2 x3

x1 x3 x1

x3 x1 x2

According to TSM, now x1 is not a winner. Thus, the total score of
x1, 2s2 + s3, is smaller than the total score of at least other alternative.
Taking into account that the total score of x2 is 2s1 + s3, and the total
score of x3 is s1 + s2 + s3, then we have that either 2s2 + s3 < 2s1 + s3

or 2s2 + s3 < s1 + s2 + s3 . In either case, s1 > s2.
2. The third voter interchanges the second and the third alternatives, and

the opinions of the other voters do not change:

Voter 1 Voter 2 Voter 3
x1 x2 x3

x2 x3 x2

x3 x1 x1

According to BSM, now x1 is not a winner. Thus, the total score of
x1, s1 + 2s3, is smaller than the total score of at least other alternative.
Taking into account that the total score of x2 is s1 + 2s2, and the total
score of x3 is s1 + s2 + s3, then we have that either s1 + 2s3 < s1 + 2s2

or s1 + 2s3 < s1 + s2 + s3 . In either case s2 > s3.
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Note that the obtained extended scoring rule, (s1, s2, s3), where
s1 > s2 > s3 , is equivalent to (s1 − s2, 0, s3 − s2) which defines the
1–best 1–worst voting system [α ; δ], where α = s1 − s2 and δ = s2 − s3.

Finally, suppose that n ≥ 4 and consider an extended scoring rule
with associated vector of scores (s1, . . . , sn) such that s1 ≥ · · · ≥ sn and
s1 > sn.

In order to prove s1 > s2 = · · · = sn−1 > sn , consider the following
situation where, for k = 1, .., n− 1, the elements in row k + 1 are obtained
from row k by moving the element in column 1 in row k to column n in row
k +1, and moving the element in column j, j 6= 1, in row k to column j− 1
in row k + 1.

Voter 1 Voter 2 · · · Voter n− 1 Voter n
x1 x2 · · · xn−1 xn

x2 x3 · · · xn x1

· · · · · · · · · · · · · · ·
xk xk+1 · · · xk−2 xk−1

xk+1 xk+2 · · · xk−1 xk

· · · · · · · · · · · · · · ·
xn−1 xn · · · xn−3 xn−2

xn x1 · · · xn−2 xn−1

It is clear that all the alternatives obtain the same total score:
s1 + · · ·+ sn, so all of them are winners9.

Now we modify the previous situation in the following cases:

1. The first voter interchanges the first and the second alternatives, and
the opinions of the other voters do not change:

Voter 1 Voter 2 · · · Voter n− 1 Voter n
x2 x2 · · · xn−1 xn

x1 x3 · · · xn x1

· · · · · · · · · · · · · · ·
xn−1 xn · · · xn−3 xn−2

xn x1 · · · xn−2 xn−1

According to TSM, now x1 is not a winner. Thus, the total score
of x1, 2s2 + s3 + · · · + sn, is smaller than the total score of at least
one other alternative. Taking into account that the total score of x2 is
2s1 + s3 + · · · + sn, and that of each of x3, . . . , xn is s1 + · · · + sn,
then we have that either 2s2 + s3 + · · · + sn < 2s1 + s3 + · · · + sn or
2s2 + s3 + · · ·+ sn < s1 + · · ·+ sn. In either case, s1 > s2.

2. The second voter interchanges x1 and xn, and the opinions of the other
voters do not change:

9 Note that it is also true for any social choice function satisfying anonymity
and neutrality.
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Voter 1 Voter 2 · · · Voter n− 1 Voter n
x1 x2 · · · xn−1 xn

x2 x3 · · · xn x1

· · · · · · · · · · · · · · ·
xn−1 x1 · · · xn−3 xn−2

xn xn · · · xn−2 xn−1

According to BSM, now xn is not a winner. Thus, the total score of
xn, which is s1 + · · · + sn−2 + 2sn, is smaller than the total score of
at least one other alternative. Taking into account that the total score
of x1 is s1 + · · · + sn−2 + 2sn−1, and that of each of x2, . . . , xn−1 is
s1 + · · ·+ sn, then either s1 + · · ·+ sn−2 +2sn < s1 + · · ·+ sn−2 +2sn−1

or s1 + · · ·+ sn−2 + 2sn < s1 + · · ·+ sn. In either case sn−1 > sn.
3. The first voter interchanges xk and xk+1, successively for k = 2, . . . , n−2,

and the opinions of the other voters do not change:

Voter 1 Voter 2 · · · Voter n− 1 Voter n
x1 x2 · · · xn−1 xn

· · · · · · · · · · · · · · ·
xk+1 xk+1 · · · xk−2 xk−1

xk xk+2 · · · xk−1 xk

· · · · · · · · · · · · · · ·
xn x1 · · · xn−2 xn−1

According to IMA, all the alternatives remain winners. In particular,
xk and xk+1 should have the same score. Then,

(s1 + · · ·+ sn)− sk + sk+1 = (s1 + · · ·+ sn) + sk − sk+1.

Consequently, sk = sk+1 for k = 2, . . . , n−2, i.e., s2 = s3 = · · · = sn−1.

Thus, we have s1 > s2 = s3 = · · · = sn−1 > sn. This extended10 scoring
rule, (s1, s2, . . . , sn), is equivalent to the standard (s1−s2, 0, . . . , 0, sn−s2)
which defines the 1–best 1–worst voting system [α ; δ], where α = s1 − s2

and δ = s2 − sn.

Proposition 1. TSM, BSM and IMA are independent.
Proof.

1. Plurality satisfies TSM and IMA, but not BSM.
2. Antiplurality satisfies BSM and IMA, but not TSM.
3. The Borda rule satisfies TSM and BSM, but not IMA.

Now we present a characterization of the basic 1–best 1–worst voting
system [1 ; 1] by means of just one property, in addition to Young’s. This
additional condition is related to Young’s [22] cancellation condition.

TBC Top Bottom Cancellation: In any situation where each alternative
considered the best by one voter is cancelled by the same alternative
considered the worst by another voter, all the alternatives win.

10 Notice that no sign conditions on the scores are obtained from the imposed
properties.
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Theorem 2. An extended scoring rule satisfies TBC if and only if it is the
basic 1–best 1–worst voting system [1 ; 1].
Proof. Obviously, [1 ; 1] satisfies TBC.

Notice that if n = 2, just the definition of scoring rule entails s1 > s2,
and it is routine to check that holds.

Now, if n ≥ 3 , consider the following situation:

Voter 1 Voter 2
x1 xn

x2 x2

· · · · · ·
xn−1 xn−1

xn x1

The total score of each of x1 and xn is s1 + sn, and that of xi,
i = 2, . . . , n − 1, is 2si. By TBC all the alternatives win, and so all of
them have the same total score: s1 + sn = 2s2 = · · · = 2sn−1.

This extended scoring rule, (s1,
s1+sn

2 , . . . , s1+sn

2 , sn), is equivalent to
(s1−sn, s1−sn

2 , . . . , s1−sn

2 , 0), and to (2, 1, . . . , 1, 0) , and to (1, 0, . . . , 0,−1),
which is just [1 ; 1].

4 Discussion

In this paper, we have assumed that voters can easily select both their
“best” and their “worst” alternative in a consistent fashion. However, one
might ask whether this is the case. This question is partially answered, in a
positive manner, by the success of the best-worst method in discrete choice
experiments (see Section 1). Also, to the extent that voters can respond
reliably in elections that require a voter to select the best alternative (plu-
rality) [respectively, the worst alternative (antiplurality)], one might expect
that they can vote reliably in elections that use 1−best 1−worst voting.
Nonetheless, if each voter may have a weak order, rather than a linear or-
der, over the alternatives, then it may be preferable not to ask a voter to
select the best, worst, or best and worst candidate(s), as several candidates
may be tied – either as best or as worst – in the voter’s weak order. In such
a case, approval-disapproval voting11 seems appropriate, and an interesting
open problem (as far as we know) is to characterize that voting method.

Finally, if it is reasonable to assume that a voter can partially order the
set of n alternatives, beyond the “best” and the “worst”, then it is of inter-
est to explore the characterization of the more general ranked p−approval
11 Approval-disapproval voting allows each voter to approve of any number of
alternatives k (0 ≤ k ≤ n) and to disapprove of any number of alternatives l (0 ≤
l ≤ n) , where k and l are selected by the voter, with the constraints that the set of
approved alternatives is disjoint from the set of disapproved alternatives, and 1 ≤
k + l ≤ n. The natural social choice function assumes that the alternative(s) with
the highest difference score – its total approval votes minus its total disapproval
votes – is (are) the winner(s).
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q−disapproval voting system - where each voter approves of a common num-
ber, p, of alternatives and disapproves of a common number, q, of alter-
natives, with similar constraints on the sets of approved and disapproved
alternatives to those concerning approval-disapproval voting.
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