A compromise between Majority Judgement and Range Voting

José Luis GARCÍA-LAPRESTA Miguel MARTÍNEZ-PANERO

PRESAD Research Group University of Valladolid, Spain

Workshop on New Approaches to Voting and Social Choice

Tilburg, May 25-26, 2009

Majority Judgement

Michel BALINSKI, Rida LARAKI: MAJORITY JUDGEMENT

- The Majority Judgement (2007) http://ceco.polytechnique.fr/jugement-majoritaire.html
- A theory of measuring, electing and ranking Proceedings of the National Academy os Sciences of the United States of America 104, pp. 8720-8725 (2007)
- Election by Majority Judgement: Experimental evidence *Ecole Polytechnique – Centre National de la Recherche Scientifique*, Cahier 2007-28 (2007)

A proposal for voting in political elections by means of linguistic assessments

median + breaking ties

A compromise between Majority Judgement and Range Voting

J.L. García-Lapresta – M. Martínez-Panero A compromise between Majority Judgement and Range Votin

Range/Utilitarian Voting

Warren D. Smith: **RANGE VOTING**

- Range voting (2000)
 - $http://www.math.temple.edu/{\sim}wds/homepage/rangevote.pdf$

Claude Hillinger: UTILITARIAN VOTING

- Voting and the cardinal aggregation of judgments SEMECON, University of Munich (2004)
- The case for utilitarian voting Department of Economics, University of Munich, Discussion paper 2005-11 (2005)

Two proposals for voting in political elections by means of numerical scales

Criticisms on Majority Judgement

J.L. García-Lapresta – M. Martínez-Panero

- W. D. Smith (2007): On Balinski & Laraki's "Majority Judgement" median-based range-like voting scheme http://rangevoting.org/MedianVrange.html
- D. S. Felsenthal, M. Machover: The Majority Judgment voting procedure: A critical evaluation Forthcoming in *Homo Oeconomicus*
- J. L García-Lapresta, M. Martínez-Panero (2008): Sorting alternatives into linguistic classes and their aggregation *Computational Intelligence in Decision and Control*, World Scientific, Singapore, pp. 531-536
- J. L. García-Lapresta, M. Martínez-Panero (2009): Linguistic-based voting through centered OWA operators Forthcoming in *Fuzzy Optimization and Decision Making*
- **H. Nurmi** (2009): Voting Theory Forthcoming

arithmetic mean

Majority Judgement versus Range Voting

Ballot used in the Orsay experiment

Majority Judgement

- It uses the median as aggregation operator
- Breaking ties \longrightarrow a lot of cases

Range Voting

- It does not use linguistic information but numerical values
- It uses the arithmetic mean as aggregation operator
- It does not need to break ties

J.L. García-Lapresta – M. Martínez-Panero A compromise between Majority Judgement and Range Voting

The Orsay experiment: Official, MJ and RV rankings

CANDIDATE	OFFICIAL	MJ	RV
Royal	1	2	2
Sarkozy	2	3	3
Bayrou	3	1	1
Le Pen	4	12	11
Besancenot	5	5	5
Villiers	6	10	9
Voynet	7	4	4
Buffet	8	6	6
Bové	9	7	7
Laguiller	10	8	8
Nihous	11	9	10
Schivardi	12	11	12

Bulletin de vote du « jugement majoritaire »

Pour présider la France, ayant pris tous les éléments en compte, je juge en conscience que ce candidat serait :

	Très Bien	Bien	Assez Bien	Passable	Insuffisant	A Rejeter
Olivier Besancenot						
Marie-George Buffet						
Gérard Schivardi						
François Bayrou						
José Bové						
Dominique Voynet						
Philippe de Villiers						
Ségolène Royal						
Frédéric Nihous						
Jean-Marie Le Pen						
Arlette Laguiller						
Nicolas Sarkozy						

Cochez une seule mention dans la ligne de chaque candidat. Ne pas cocher une mention dans la ligne d'un candidat revient à le Rejeter

J.L. García-Lapresta – M. Martínez-Panero

A compromise between Majority Judgement and Range Voting

Notation • $V = \{1, ..., m\}$ set of voters $(m \ge 2)$ • $X = \{x_1, ..., x_n\}$ set of alternatives $(n \ge 2)$ • $L = \{l_1, ..., l_g\}$ ordered set of linguistic terms $(g \ge 2)$ $l_1 < \cdots < l_g$ Example $l_1 \quad l_2 \quad l_3 \quad l_4 \quad l_5 \quad l_6$ to reject poor acceptable good very good excellent

Notation

• A profile is a matrix $m \times n$ with coefficients in L

$$\left(\begin{array}{cccccc} a_1^1 & \cdots & a_j^1 & \cdots & a_n^1 \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_1^i & \cdots & a_j^i & \cdots & a_n^i \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ a_1^m & \cdots & a_j^m & \cdots & a_n^m \end{array}\right)$$

where $a_i^i \in L$ is the assessment that voter *i* assigns to x_i

• \mathcal{P} set of profiles

J.L. García-Lapresta – M. Martínez-Panero A compromise between Majority Judgement and Range Voting

The middlemost condition in small electorales

Remark (after Galton, 1907)

If $l(x_j) \in L$ fulfills the *middlemost* condition, this social grade cannot be objectionable by an absolute majority of voters for being either too high or too low

Remark

There always exists $l(x_j) \in L$ for each $x_j \in X$ verifying the *middlemost* condition, but such a grade might not be necessarily unique

Notation

 $L(x_j)$ set of terms satisfying the *middlemost* condition

• Balinski – Laraki proposal: $l(x_j) = \min L(x_j)$ In large electorates usually $|L(x_j)| = 1$

Majority Judgement

Example

$$\begin{pmatrix} a_1^1 & \cdots & a_j^1 & \cdots & a_n^1 \\ \cdots & \cdots & \cdots & \cdots \\ a_1^i & \cdots & a_j^i & \cdots & a_n^i \\ \cdots & \cdots & \cdots & \cdots \\ a_1^m & \cdots & a_j^m & \cdots & a_n^m \end{pmatrix} \longmapsto (l(x_1), \dots, l(x_j), \dots, l(x_n))$$

$$l(x_j) = f(a_j^1, \dots, a_j^m) \qquad j = 1, \dots, n$$

$$Middlemost \text{ condition (Galton, 1907)}$$

$$l(x_j) \in L \text{ must satisfy}$$

$$\#\{i \in V \mid a_j^i \ge l(x_j)\} \ge \frac{m}{2} \quad \text{and} \quad \#\{i \in V \mid a_j^i \le l(x_j)\} \ge \frac{m}{2}$$

Majority Judgement $\rightarrow f$ median

J.L. García-Lapresta – M. Martínez-Panero A compromise between Majority Judgement and Range Voting

The *middlemost* condition in small electorales

Our adjustm	nent		
$l(x_j) = \left\{ \begin{array}{c} \\ \end{array} \right.$	median $L(x_j)$ median $L(x_j) \setminus \{\max L(x_j)\}$	$\begin{array}{l} \text{if} \ L(x_j) \\ \\ \text{if} \ L(x_j) \end{array}$	is odd is even

TR	P	A	G	VG	E	MJ	
4 + 1	0	0	0	0	5	TR	
4	1	0	0	0	5	Р	
4	0	1	0	0	5	А	
4	0	0	1	0	5	G	

A median voter could become a kind of dictator

The *middlemost* condition in small electorales

E:

xample								
	TR	Р	A	G	VG	E	MJ	Adjustment
	5	0	0	0	0	5	TR	А
	4	1	0	0	0	5	Р	G
	4	0	1	0	0	5	Α	G
	4	0	0	1	0	5	G	VG

The collective grade under our adjustment might not have been assessed by any voter

J.L. García-Lapresta – M. Martínez-Panero A compromise between Majority Judgement and Range Voting

1.

The 2-tuple approach (Herrera – Martínez, 2000)

$$\langle L \rangle = L \times [-0.5, 0.5) \text{ is the 2-tuple set associated with } L$$
The function $\Delta : [1, g] \longrightarrow \langle L \rangle$ is given by

$$\Delta(\beta) = (l_h, \alpha) \text{ with } \begin{cases} h = \text{ round } (\beta) \\ \alpha = \beta - h \end{cases}$$
where round assigns to β the integer $h \in \{1, \dots, g\}$ closest to β
Example

$$l_1 \quad l_2 \quad l_3 \quad l_4 \quad l_5 \quad l_6$$
to reject poor acceptable good very good excellent

$$\langle L \rangle \equiv [1, 6]$$

$$\Delta(3.8) = (\text{good}, -0.2) \quad \Delta(4.3) = (\text{good}, 0.3)$$

Our proposal

- Majority Judgement is very sensitive towards the median voter
- Range Voting is very sensitive towards extreme assessments

García-Lapresta, J.L., Martínez-Panero, M. Linguistic-based voting through centered OWA operators Forthcoming in *Fuzzy Optimization and Decision Making*

- Voters assign a linguistic term to each candidate
- Individual assessments are aggregated by means of centered OWA operators and the 2-tuple approach
- The outcome is a 2-tuple for each candidate: a linguistic term plus a number (for breaking ties)
- Gandidates are sorted and ranked

J.L. García-Lapresta – M. Martínez-Panero A compromise between Majority Judgement and Range Voting

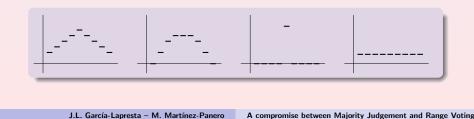
Let $F_{\mathbf{w}}: \mathbb{R}^m \longrightarrow \mathbb{R}$ be the OWA operator associated with the weighting vector $\mathbf{w} = (w_1, \dots, w_m) \in [0, 1]^m$, such that $\sum_{i=1}^m w_i = 1$

$$F_{\mathbf{w}}(\beta_1,\ldots,\beta_m) = w_1 \cdot \beta_{(1)} + \cdots + w_m \cdot \beta_{(m)}$$

where $\beta_{(i)}$ is the *i*-th greatest number of β_1, \ldots, β_m

Centered OWA operators (after Yager, 2007)

Let $F_{\mathbf{w}}$ be the OWA operator associated with the weighting vector $\mathbf{w} = (w_1, \dots, w_m) \in [0, 1]^m$, such that $\sum_{i=1}^m w_i = 1$


We say that $F_{\mathbf{w}}$ is **centered** if the following two conditions are satisfied:

• Symmetry

$$w_i = w_{m+1-i}$$
 for every $i \in \left\{1, \dots, \left\lfloor \frac{m}{2} \right\rfloor\right\}$

O Decaying

 $w_i \le w_j$ whenever $i < j \le \left[\frac{m+1}{2}\right]$ or $i > j \ge \left[\frac{m+1}{2}\right]$

Our proposal

$$L^m \longrightarrow \langle L \rangle$$
$$(a_j^1, \dots, a_j^m) \mapsto v(x_j$$

satisfies anonymity, unanimity, monotonicity, compensativeness and self-duality

The previous definition induces a voting system, called the $F_{\rm w}\mbox{-}{\rm procedure}$

It generates a weak order on the set of alternatives:

$$x_i \succcurlyeq x_j \Leftrightarrow v(x_i) \succcurlyeq v(x_j)$$

$$(l_k, \alpha_k) \succcurlyeq (l_{k'}, \alpha_{k'}) \Leftrightarrow \begin{cases} k > k' \\ \text{or} \\ k = k' \text{ and } \alpha_k \ge \alpha_{k'} \end{cases}$$

Our proposal

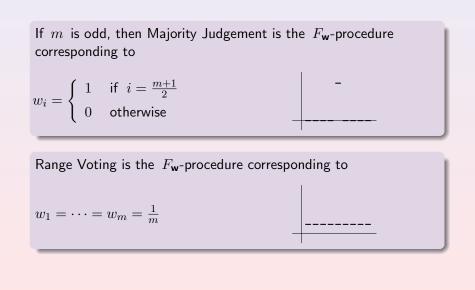
$$\pi: L \longrightarrow \{1, \dots, g\}$$
 is defined by $\pi(l_h) = h$ for $h = 1, \dots, g$

Definition

Let $F_{\mathbf{w}}$ the centered OWA operator associated with the weighting vector $\mathbf{w}=(w_1,\ldots,w_m)$

The mapping $G_{\mathbf{w}}: \mathcal{P} \longrightarrow \langle L \rangle^n$ is defined by

$$G_{\mathbf{w}}(P) = (v(x_1), \dots, v(x_n))$$


where

$$v(x_j) = \Delta(F_{\mathbf{w}}(\pi(a_j^1), \dots, \pi(a_j^m)))$$

is the collective assessment on x_i

J.L. García-Lapresta – M. Martínez-Panero A compromise between Majority Judgement and Range Voting

Majority Judgement and Range Voting as F_{w} -procedures

Example 1

$V = \{1, \dots, 9\}, \ X = \{x_1, x_2\}, \ L = \{l_1, \dots, l_7\}$										
		1	2	3	4	5	6	7	8	9
	x_1	l_4	l_7	l_7	l_3	l_7	l_3	l_3	l_7	l_3
	x_2	l_5	l_6	l_6	l_1	l_6	l_1	l_1	l_6	l_1

- Eight out of nine agents prefer x_1 to x_2 and only one agent prefers x_2 to x_1
- Under Majority Judgement x_2 defeats x_1 because the median of the assessments are l_5 and l_4 respectively
- Under a F_{w} -procedure

$$x_1 \succ x_2 \Leftrightarrow w_5 < 0.6$$

- Under Range Voting x_1 defeats x_2 ($w_5 = 0.11 < 0.6$)
 - J.L. García-Lapresta M. Martínez-Panero A compromise between Majority Judgement and Range Voting

Concluding remarks

- Majority Judgement is not suitable for small electorates (committees)
- Majority Judgement needs a breaking ties process that uses more information than just the median
- Range Voting is very sensitive towards extreme opinions (outliers)
- The proposed voting system is very flexible and allows us to adapt it to each specific scenario

Example 2

$$V = \{1, \dots, 5\}, X = \{x_1, x_2\}, L = \{l_1, \dots, l_7\}$$

1	2	3	4	5
l_7 l_6				

- Four out of five agents prefer x_1 to x_2 and only one agent prefers x_2 to x_1
- Under Majority Judgement x_1 defeats x_2 because the median of the assessments are l_7 and l_6 , respectively

• Under a F_{w} -procedure

$$x_1 \succ x_2 \Leftrightarrow w_1 < 0.14$$

• Under Range Voting x_2 defeats x_1 ($w_1 = 0.2 > 0.14$)

J.L. García-Lapresta – M. Martínez-Panero A compromise between Majority Judgement and Range Voting